Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import os.path as osp | |
from typing import List | |
import mmengine | |
import numpy as np | |
from mmengine.dataset import BaseDataset | |
from pycocotools.coco import COCO | |
from mmpretrain.registry import DATASETS | |
class RefCOCO(BaseDataset): | |
"""RefCOCO dataset. | |
RefCOCO is a popular dataset used for the task of visual grounding. | |
Here are the steps for accessing and utilizing the | |
RefCOCO dataset. | |
You can access the RefCOCO dataset from the official source: | |
https://github.com/lichengunc/refer | |
The RefCOCO dataset is organized in a structured format: :: | |
FeaturesDict({ | |
'coco_annotations': Sequence({ | |
'area': int64, | |
'bbox': BBoxFeature(shape=(4,), dtype=float32), | |
'id': int64, | |
'label': int64, | |
}), | |
'image': Image(shape=(None, None, 3), dtype=uint8), | |
'image/id': int64, | |
'objects': Sequence({ | |
'area': int64, | |
'bbox': BBoxFeature(shape=(4,), dtype=float32), | |
'gt_box_index': int64, | |
'id': int64, | |
'label': int64, | |
'refexp': Sequence({ | |
'raw': Text(shape=(), dtype=string), | |
'refexp_id': int64, | |
}), | |
}), | |
}) | |
Args: | |
ann_file (str): Annotation file path. | |
data_root (str): The root directory for ``data_prefix`` and | |
``ann_file``. Defaults to ''. | |
data_prefix (str): Prefix for training data. | |
pipeline (Sequence): Processing pipeline. Defaults to an empty tuple. | |
**kwargs: Other keyword arguments in :class:`BaseDataset`. | |
""" | |
def __init__(self, | |
data_root, | |
ann_file, | |
data_prefix, | |
split_file, | |
split='train', | |
**kwargs): | |
self.split_file = split_file | |
self.split = split | |
super().__init__( | |
data_root=data_root, | |
data_prefix=dict(img_path=data_prefix), | |
ann_file=ann_file, | |
**kwargs, | |
) | |
def _join_prefix(self): | |
if not mmengine.is_abs(self.split_file) and self.split_file: | |
self.split_file = osp.join(self.data_root, self.split_file) | |
return super()._join_prefix() | |
def load_data_list(self) -> List[dict]: | |
"""Load data list.""" | |
with mmengine.get_local_path(self.ann_file) as ann_file: | |
coco = COCO(ann_file) | |
splits = mmengine.load(self.split_file, file_format='pkl') | |
img_prefix = self.data_prefix['img_path'] | |
data_list = [] | |
join_path = mmengine.fileio.get_file_backend(img_prefix).join_path | |
for refer in splits: | |
if refer['split'] != self.split: | |
continue | |
ann = coco.anns[refer['ann_id']] | |
img = coco.imgs[ann['image_id']] | |
sentences = refer['sentences'] | |
bbox = np.array(ann['bbox'], dtype=np.float32) | |
bbox[2:4] = bbox[0:2] + bbox[2:4] # XYWH -> XYXY | |
for sent in sentences: | |
data_info = { | |
'img_path': join_path(img_prefix, img['file_name']), | |
'image_id': ann['image_id'], | |
'ann_id': ann['id'], | |
'text': sent['sent'], | |
'gt_bboxes': bbox[None, :], | |
} | |
data_list.append(data_info) | |
if len(data_list) == 0: | |
raise ValueError(f'No sample in split "{self.split}".') | |
return data_list | |