TTP / mmpretrain /datasets /refcoco.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import List
import mmengine
import numpy as np
from mmengine.dataset import BaseDataset
from pycocotools.coco import COCO
from mmpretrain.registry import DATASETS
@DATASETS.register_module()
class RefCOCO(BaseDataset):
"""RefCOCO dataset.
RefCOCO is a popular dataset used for the task of visual grounding.
Here are the steps for accessing and utilizing the
RefCOCO dataset.
You can access the RefCOCO dataset from the official source:
https://github.com/lichengunc/refer
The RefCOCO dataset is organized in a structured format: ::
FeaturesDict({
'coco_annotations': Sequence({
'area': int64,
'bbox': BBoxFeature(shape=(4,), dtype=float32),
'id': int64,
'label': int64,
}),
'image': Image(shape=(None, None, 3), dtype=uint8),
'image/id': int64,
'objects': Sequence({
'area': int64,
'bbox': BBoxFeature(shape=(4,), dtype=float32),
'gt_box_index': int64,
'id': int64,
'label': int64,
'refexp': Sequence({
'raw': Text(shape=(), dtype=string),
'refexp_id': int64,
}),
}),
})
Args:
ann_file (str): Annotation file path.
data_root (str): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (str): Prefix for training data.
pipeline (Sequence): Processing pipeline. Defaults to an empty tuple.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root,
ann_file,
data_prefix,
split_file,
split='train',
**kwargs):
self.split_file = split_file
self.split = split
super().__init__(
data_root=data_root,
data_prefix=dict(img_path=data_prefix),
ann_file=ann_file,
**kwargs,
)
def _join_prefix(self):
if not mmengine.is_abs(self.split_file) and self.split_file:
self.split_file = osp.join(self.data_root, self.split_file)
return super()._join_prefix()
def load_data_list(self) -> List[dict]:
"""Load data list."""
with mmengine.get_local_path(self.ann_file) as ann_file:
coco = COCO(ann_file)
splits = mmengine.load(self.split_file, file_format='pkl')
img_prefix = self.data_prefix['img_path']
data_list = []
join_path = mmengine.fileio.get_file_backend(img_prefix).join_path
for refer in splits:
if refer['split'] != self.split:
continue
ann = coco.anns[refer['ann_id']]
img = coco.imgs[ann['image_id']]
sentences = refer['sentences']
bbox = np.array(ann['bbox'], dtype=np.float32)
bbox[2:4] = bbox[0:2] + bbox[2:4] # XYWH -> XYXY
for sent in sentences:
data_info = {
'img_path': join_path(img_prefix, img['file_name']),
'image_id': ann['image_id'],
'ann_id': ann['id'],
'text': sent['sent'],
'gt_bboxes': bbox[None, :],
}
data_list.append(data_info)
if len(data_list) == 0:
raise ValueError(f'No sample in split "{self.split}".')
return data_list