TTP / mmpretrain /datasets /gqa_dataset.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import List
import mmengine
from mmengine.dataset import BaseDataset
from mmpretrain.registry import DATASETS
@DATASETS.register_module()
class GQA(BaseDataset):
"""GQA dataset.
We use the annotation file from LAVIS, and you can download all annotation files from following links: # noqa: E501
train:
https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/train_balanced_questions.json # noqa: E501
val:
https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/testdev_balanced_questions.json # noqa: E501
test:
https://storage.googleapis.com/sfr-vision-language-research/LAVIS/datasets/gqa/test_balanced_questions.json # noqa: E501
and images from the official website:
https://cs.stanford.edu/people/dorarad/gqa/index.html
Args:
data_root (str): The root directory for ``data_prefix``, ``ann_file``
and ``question_file``.
data_prefix (str): The directory of images.
ann_file (str, optional): Annotation file path for training and
validation. Defaults to an empty string.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root: str,
data_prefix: str,
ann_file: str = '',
**kwarg):
super().__init__(
data_root=data_root,
data_prefix=dict(img_path=data_prefix),
ann_file=ann_file,
**kwarg,
)
def load_data_list(self) -> List[dict]:
"""Load data list."""
annotations = mmengine.load(self.ann_file)
data_list = []
for ann in annotations:
# ann example
# {
# 'question': "Is it overcast?",
# 'answer': 'no,
# 'image_id': n161313.jpg,
# 'question_id': 262148000,
# ....
# }
data_info = dict()
data_info['img_path'] = osp.join(self.data_prefix['img_path'],
ann['image'])
data_info['question'] = ann['question']
data_info['gt_answer'] = ann['answer']
data_list.append(data_info)
return data_list