TTP / mmpretrain /datasets /flickr30k_caption.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import mmengine
from mmengine.dataset import BaseDataset
from mmengine.fileio import get_file_backend
from mmpretrain.registry import DATASETS
@DATASETS.register_module()
class Flickr30kCaption(BaseDataset):
"""Flickr30k Caption dataset. To generate coco-style GT annotation for
evaluation, please refer to
tools/dataset_converters/convert_flickr30k_ann.py.
Args:
data_root (str): The root directory for ``data_prefix``, ``ann_file``
and ``question_file``.
data_prefix (str): The directory of images.
ann_file (str): Annotation file path for training and validation.
split (str): 'train', 'val' or 'test'.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self, data_root: str, data_prefix: str, ann_file: str,
split: str, **kwarg):
assert split in ['train', 'val', 'test'], \
'`split` must be train, val or test'
self.split = split
super().__init__(
data_root=data_root,
data_prefix=dict(img_path=data_prefix),
ann_file=ann_file,
**kwarg,
)
def load_data_list(self) -> List[dict]:
"""Load data list."""
img_prefix = self.data_prefix['img_path']
annotations = mmengine.load(self.ann_file)
file_backend = get_file_backend(img_prefix)
data_list = []
for img in annotations['images']:
# img_example={
# "sentids": [0, 1, 2],
# "imgid": 0,
# "sentences": [
# {"raw": "Two men in green shirts standing in a yard.",
# "imgid": 0, "sentid": 0},
# {"raw": "A man in a blue shirt standing in a garden.",
# "imgid": 0, "sentid": 1},
# {"raw": "Two friends enjoy time spent together.",
# "imgid": 0, "sentid": 2}
# ],
# "split": "train",
# "filename": "1000092795.jpg"
# },
if img['split'] != self.split:
continue
for sentence in img['sentences']:
data_info = {
'image_id': img['imgid'],
'img_path': file_backend.join_path(img_prefix,
img['filename']),
'gt_caption': sentence['raw']
}
data_list.append(data_info)
return data_list