KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
from mmengine import get_file_backend, list_from_file
from mmengine.logging import MMLogger
from mmpretrain.registry import DATASETS
from .base_dataset import BaseDataset
from .categories import CUB_CATEGORIES
@DATASETS.register_module()
class CUB(BaseDataset):
"""The CUB-200-2011 Dataset.
Support the `CUB-200-2011 <http://www.vision.caltech.edu/visipedia/CUB-200-2011.html>`_ Dataset.
Comparing with the `CUB-200 <http://www.vision.caltech.edu/visipedia/CUB-200.html>`_ Dataset,
there are much more pictures in `CUB-200-2011`. After downloading and decompression, the dataset
directory structure is as follows.
CUB dataset directory: ::
CUB_200_2011
β”œβ”€β”€ images
β”‚ β”œβ”€β”€ class_x
β”‚ β”‚ β”œβ”€β”€ xx1.jpg
β”‚ β”‚ β”œβ”€β”€ xx2.jpg
β”‚ β”‚ └── ...
β”‚ β”œβ”€β”€ class_y
β”‚ β”‚ β”œβ”€β”€ yy1.jpg
β”‚ β”‚ β”œβ”€β”€ yy2.jpg
β”‚ β”‚ └── ...
β”‚ └── ...
β”œβ”€β”€ images.txt
β”œβ”€β”€ image_class_labels.txt
β”œβ”€β”€ train_test_split.txt
└── ....
Args:
data_root (str): The root directory for CUB-200-2011 dataset.
split (str, optional): The dataset split, supports "train" and "test".
Default to "train".
Examples:
>>> from mmpretrain.datasets import CUB
>>> train_dataset = CUB(data_root='data/CUB_200_2011', split='train')
>>> train_dataset
Dataset CUB
Number of samples: 5994
Number of categories: 200
Root of dataset: data/CUB_200_2011
>>> test_dataset = CUB(data_root='data/CUB_200_2011', split='test')
>>> test_dataset
Dataset CUB
Number of samples: 5794
Number of categories: 200
Root of dataset: data/CUB_200_2011
""" # noqa: E501
METAINFO = {'classes': CUB_CATEGORIES}
def __init__(self,
data_root: str,
split: str = 'train',
test_mode: bool = False,
**kwargs):
splits = ['train', 'test']
assert split in splits, \
f"The split must be one of {splits}, but get '{split}'"
self.split = split
# To handle the BC-breaking
if split == 'train' and test_mode:
logger = MMLogger.get_current_instance()
logger.warning('split="train" but test_mode=True. '
'The training set will be used.')
ann_file = 'images.txt'
data_prefix = 'images'
image_class_labels_file = 'image_class_labels.txt'
train_test_split_file = 'train_test_split.txt'
self.backend = get_file_backend(data_root, enable_singleton=True)
self.image_class_labels_file = self.backend.join_path(
data_root, image_class_labels_file)
self.train_test_split_file = self.backend.join_path(
data_root, train_test_split_file)
super(CUB, self).__init__(
ann_file=ann_file,
data_root=data_root,
data_prefix=data_prefix,
test_mode=test_mode,
**kwargs)
def _load_data_from_txt(self, filepath):
"""load data from CUB txt file, the every line of the file is idx and a
data item."""
pairs = list_from_file(filepath)
data_dict = dict()
for pair in pairs:
idx, data_item = pair.split()
# all the index starts from 1 in CUB files,
# here we need to '- 1' to let them start from 0.
data_dict[int(idx) - 1] = data_item
return data_dict
def load_data_list(self):
"""Load images and ground truth labels."""
sample_dict = self._load_data_from_txt(self.ann_file)
label_dict = self._load_data_from_txt(self.image_class_labels_file)
split_dict = self._load_data_from_txt(self.train_test_split_file)
assert sample_dict.keys() == label_dict.keys() == split_dict.keys(),\
f'sample_ids should be same in files {self.ann_file}, ' \
f'{self.image_class_labels_file} and {self.train_test_split_file}'
data_list = []
for sample_id in sample_dict.keys():
if split_dict[sample_id] == '1' and self.split == 'test':
# skip train samples when split='test'
continue
elif split_dict[sample_id] == '0' and self.split == 'train':
# skip test samples when split='train'
continue
img_path = self.backend.join_path(self.img_prefix,
sample_dict[sample_id])
gt_label = int(label_dict[sample_id]) - 1
info = dict(img_path=img_path, gt_label=gt_label)
data_list.append(info)
return data_list
def extra_repr(self) -> List[str]:
"""The extra repr information of the dataset."""
body = [
f'Root of dataset: \t{self.data_root}',
]
return body