TTP / mmpretrain /datasets /coco_retrieval.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os.path as osp
from collections import OrderedDict
from os import PathLike
from typing import List, Sequence, Union
from mmengine import get_file_backend
from mmpretrain.registry import DATASETS, TRANSFORMS
from .base_dataset import BaseDataset
def expanduser(data_prefix):
if isinstance(data_prefix, (str, PathLike)):
return osp.expanduser(data_prefix)
else:
return data_prefix
@DATASETS.register_module()
class COCORetrieval(BaseDataset):
"""COCO Retrieval dataset.
COCO (Common Objects in Context): The COCO dataset contains more than
330K images,each of which has approximately 5 descriptive annotations.
This dataset was releasedin collaboration between Microsoft and Carnegie
Mellon University
COCO_2014 dataset directory: ::
COCO_2014
β”œβ”€β”€ val2014
β”œβ”€β”€ train2014
β”œβ”€β”€ annotations
β”œβ”€β”€ instances_train2014.json
β”œβ”€β”€ instances_val2014.json
β”œβ”€β”€ person_keypoints_train2014.json
β”œβ”€β”€ person_keypoints_val2014.json
β”œβ”€β”€ captions_train2014.json
β”œβ”€β”€ captions_val2014.json
Args:
ann_file (str): Annotation file path.
test_mode (bool): Whether dataset is used for evaluation. This will
decide the annotation format in data list annotations.
Defaults to False.
data_root (str): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (str | dict): Prefix for training data. Defaults to ''.
pipeline (Sequence): Processing pipeline. Defaults to an empty tuple.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
Examples:
>>> from mmpretrain.datasets import COCORetrieval
>>> train_dataset=COCORetrieval(data_root='coco2014/')
>>> train_dataset
Dataset COCORetrieval
Number of samples: 414113
Annotation file: /coco2014/annotations/captions_train2014.json
Prefix of images: /coco2014/
>>> from mmpretrain.datasets import COCORetrieval
>>> val_dataset = COCORetrieval(data_root='coco2014/')
>>> val_dataset
Dataset COCORetrieval
Number of samples: 202654
Annotation file: /coco2014/annotations/captions_val2014.json
Prefix of images: /coco2014/
"""
def __init__(self,
ann_file: str,
test_mode: bool = False,
data_prefix: Union[str, dict] = '',
data_root: str = '',
pipeline: Sequence = (),
**kwargs):
if isinstance(data_prefix, str):
data_prefix = dict(img_path=expanduser(data_prefix))
ann_file = expanduser(ann_file)
transforms = []
for transform in pipeline:
if isinstance(transform, dict):
transforms.append(TRANSFORMS.build(transform))
else:
transforms.append(transform)
super().__init__(
data_root=data_root,
data_prefix=data_prefix,
test_mode=test_mode,
pipeline=transforms,
ann_file=ann_file,
**kwargs,
)
def load_data_list(self) -> List[dict]:
"""Load data list."""
# get file backend
img_prefix = self.data_prefix['img_path']
file_backend = get_file_backend(img_prefix)
anno_info = json.load(open(self.ann_file, 'r'))
# mapping img_id to img filename
img_dict = OrderedDict()
for idx, img in enumerate(anno_info['images']):
if img['id'] not in img_dict:
img_rel_path = img['coco_url'].rsplit('/', 2)[-2:]
img_path = file_backend.join_path(img_prefix, *img_rel_path)
# create new idx for image
img_dict[img['id']] = dict(
ori_id=img['id'],
image_id=idx, # will be used for evaluation
img_path=img_path,
text=[],
gt_text_id=[],
gt_image_id=[],
)
train_list = []
for idx, anno in enumerate(anno_info['annotations']):
anno['text'] = anno.pop('caption')
anno['ori_id'] = anno.pop('id')
anno['text_id'] = idx # will be used for evaluation
# 1. prepare train data list item
train_data = anno.copy()
train_image = img_dict[train_data['image_id']]
train_data['img_path'] = train_image['img_path']
train_data['image_ori_id'] = train_image['ori_id']
train_data['image_id'] = train_image['image_id']
train_data['is_matched'] = True
train_list.append(train_data)
# 2. prepare eval data list item based on img dict
img_dict[anno['image_id']]['gt_text_id'].append(anno['text_id'])
img_dict[anno['image_id']]['text'].append(anno['text'])
img_dict[anno['image_id']]['gt_image_id'].append(
train_image['image_id'])
self.img_size = len(img_dict)
self.text_size = len(anno_info['annotations'])
# return needed format data list
if self.test_mode:
return list(img_dict.values())
return train_list