TTP / mmdet /utils /split_batch.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import torch
def split_batch(img, img_metas, kwargs):
"""Split data_batch by tags.
Code is modified from
<https://github.com/microsoft/SoftTeacher/blob/main/ssod/utils/structure_utils.py> # noqa: E501
Args:
img (Tensor): of shape (N, C, H, W) encoding input images.
Typically these should be mean centered and std scaled.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys, see
:class:`mmdet.datasets.pipelines.Collect`.
kwargs (dict): Specific to concrete implementation.
Returns:
data_groups (dict): a dict that data_batch splited by tags,
such as 'sup', 'unsup_teacher', and 'unsup_student'.
"""
# only stack img in the batch
def fuse_list(obj_list, obj):
return torch.stack(obj_list) if isinstance(obj,
torch.Tensor) else obj_list
# select data with tag from data_batch
def select_group(data_batch, current_tag):
group_flag = [tag == current_tag for tag in data_batch['tag']]
return {
k: fuse_list([vv for vv, gf in zip(v, group_flag) if gf], v)
for k, v in data_batch.items()
}
kwargs.update({'img': img, 'img_metas': img_metas})
kwargs.update({'tag': [meta['tag'] for meta in img_metas]})
tags = list(set(kwargs['tag']))
data_groups = {tag: select_group(kwargs, tag) for tag in tags}
for tag, group in data_groups.items():
group.pop('tag')
return data_groups