TTP / mmdet /evaluation /metrics /mot_challenge_metric.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
import shutil
import tempfile
from collections import defaultdict
from typing import List, Optional, Union
import numpy as np
import torch
try:
import trackeval
except ImportError:
trackeval = None
from mmengine.dist import (all_gather_object, barrier, broadcast,
broadcast_object_list, get_dist_info,
is_main_process)
from mmengine.logging import MMLogger
from mmdet.registry import METRICS, TASK_UTILS
from .base_video_metric import BaseVideoMetric
def get_tmpdir() -> str:
"""return the same tmpdir for all processes."""
rank, world_size = get_dist_info()
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8)
if rank == 0:
tmpdir = tempfile.mkdtemp()
tmpdir = torch.tensor(bytearray(tmpdir.encode()), dtype=torch.uint8)
dir_tensor[:len(tmpdir)] = tmpdir
broadcast(dir_tensor, 0)
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
return tmpdir
@METRICS.register_module()
class MOTChallengeMetric(BaseVideoMetric):
"""Evaluation metrics for MOT Challenge.
Args:
metric (str | list[str]): Metrics to be evaluated. Options are
'HOTA', 'CLEAR', 'Identity'.
Defaults to ['HOTA', 'CLEAR', 'Identity'].
outfile_prefix (str, optional): Path to save the formatted results.
Defaults to None.
track_iou_thr (float): IoU threshold for tracking evaluation.
Defaults to 0.5.
benchmark (str): Benchmark to be evaluated. Defaults to 'MOT17'.
format_only (bool): If True, only formatting the results to the
official format and not performing evaluation. Defaults to False.
postprocess_tracklet_cfg (List[dict], optional): configs for tracklets
postprocessing methods. `InterpolateTracklets` is supported.
Defaults to []
- InterpolateTracklets:
- min_num_frames (int, optional): The minimum length of a
track that will be interpolated. Defaults to 5.
- max_num_frames (int, optional): The maximum disconnected
length in a track. Defaults to 20.
- use_gsi (bool, optional): Whether to use the GSI (Gaussian-
smoothed interpolation) method. Defaults to False.
- smooth_tau (int, optional): smoothing parameter in GSI.
Defaults to 10.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Default: None
Returns:
"""
TRACKER = 'default-tracker'
allowed_metrics = ['HOTA', 'CLEAR', 'Identity']
allowed_benchmarks = ['MOT15', 'MOT16', 'MOT17', 'MOT20', 'DanceTrack']
default_prefix: Optional[str] = 'motchallenge-metric'
def __init__(self,
metric: Union[str, List[str]] = ['HOTA', 'CLEAR', 'Identity'],
outfile_prefix: Optional[str] = None,
track_iou_thr: float = 0.5,
benchmark: str = 'MOT17',
format_only: bool = False,
use_postprocess: bool = False,
postprocess_tracklet_cfg: Optional[List[dict]] = [],
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
if trackeval is None:
raise RuntimeError(
'trackeval is not installed,'
'please install it by: pip install'
'git+https://github.com/JonathonLuiten/TrackEval.git'
'trackeval need low version numpy, please install it'
'by: pip install -U numpy==1.23.5')
if isinstance(metric, list):
metrics = metric
elif isinstance(metric, str):
metrics = [metric]
else:
raise TypeError('metric must be a list or a str.')
for metric in metrics:
if metric not in self.allowed_metrics:
raise KeyError(f'metric {metric} is not supported.')
self.metrics = metrics
self.format_only = format_only
if self.format_only:
assert outfile_prefix is not None, 'outfile_prefix must be not'
'None when format_only is True, otherwise the result files will'
'be saved to a temp directory which will be cleaned up at the end.'
self.use_postprocess = use_postprocess
self.postprocess_tracklet_cfg = postprocess_tracklet_cfg.copy()
self.postprocess_tracklet_methods = [
TASK_UTILS.build(cfg) for cfg in self.postprocess_tracklet_cfg
]
assert benchmark in self.allowed_benchmarks
self.benchmark = benchmark
self.track_iou_thr = track_iou_thr
self.tmp_dir = tempfile.TemporaryDirectory()
self.tmp_dir.name = get_tmpdir()
self.seq_info = defaultdict(
lambda: dict(seq_length=-1, gt_tracks=[], pred_tracks=[]))
self.gt_dir = self._get_gt_dir()
self.pred_dir = self._get_pred_dir(outfile_prefix)
self.seqmap = osp.join(self.pred_dir, 'videoseq.txt')
with open(self.seqmap, 'w') as f:
f.write('name\n')
def __del__(self):
# To avoid tmpdir being cleaned up too early, because in multiple
# consecutive ValLoops, the value of `self.tmp_dir.name` is unchanged,
# and calling `tmp_dir.cleanup()` in compute_metrics will cause errors.
self.tmp_dir.cleanup()
def _get_pred_dir(self, outfile_prefix):
"""Get directory to save the prediction results."""
logger: MMLogger = MMLogger.get_current_instance()
if outfile_prefix is None:
outfile_prefix = self.tmp_dir.name
else:
if osp.exists(outfile_prefix) and is_main_process():
logger.info('remove previous results.')
shutil.rmtree(outfile_prefix)
pred_dir = osp.join(outfile_prefix, self.TRACKER)
os.makedirs(pred_dir, exist_ok=True)
return pred_dir
def _get_gt_dir(self):
"""Get directory to save the gt files."""
output_dir = osp.join(self.tmp_dir.name, 'gt')
os.makedirs(output_dir, exist_ok=True)
return output_dir
def transform_gt_and_pred(self, img_data_sample, video, frame_id):
video = img_data_sample['img_path'].split(os.sep)[-3]
# load gts
if 'instances' in img_data_sample:
gt_instances = img_data_sample['instances']
gt_tracks = [
np.array([
frame_id + 1, gt_instances[i]['instance_id'],
gt_instances[i]['bbox'][0], gt_instances[i]['bbox'][1],
gt_instances[i]['bbox'][2] - gt_instances[i]['bbox'][0],
gt_instances[i]['bbox'][3] - gt_instances[i]['bbox'][1],
gt_instances[i]['mot_conf'],
gt_instances[i]['category_id'],
gt_instances[i]['visibility']
]) for i in range(len(gt_instances))
]
self.seq_info[video]['gt_tracks'].extend(gt_tracks)
# load predictions
assert 'pred_track_instances' in img_data_sample
if self.use_postprocess:
pred_instances = img_data_sample['pred_track_instances']
pred_tracks = [
pred_instances['bboxes'][i]
for i in range(len(pred_instances['bboxes']))
]
else:
pred_instances = img_data_sample['pred_track_instances']
pred_tracks = [
np.array([
frame_id + 1, pred_instances['instances_id'][i].cpu(),
pred_instances['bboxes'][i][0].cpu(),
pred_instances['bboxes'][i][1].cpu(),
(pred_instances['bboxes'][i][2] -
pred_instances['bboxes'][i][0]).cpu(),
(pred_instances['bboxes'][i][3] -
pred_instances['bboxes'][i][1]).cpu(),
pred_instances['scores'][i].cpu()
]) for i in range(len(pred_instances['instances_id']))
]
self.seq_info[video]['pred_tracks'].extend(pred_tracks)
def process_image(self, data_samples, video_len):
img_data_sample = data_samples[0].to_dict()
video = img_data_sample['img_path'].split(os.sep)[-3]
frame_id = img_data_sample['frame_id']
if self.seq_info[video]['seq_length'] == -1:
self.seq_info[video]['seq_length'] = video_len
self.transform_gt_and_pred(img_data_sample, video, frame_id)
if frame_id == video_len - 1:
# postprocessing
if self.postprocess_tracklet_cfg:
info = self.seq_info[video]
pred_tracks = np.array(info['pred_tracks'])
for postprocess_tracklet_methods in \
self.postprocess_tracklet_methods:
pred_tracks = postprocess_tracklet_methods\
.forward(pred_tracks)
info['pred_tracks'] = pred_tracks
self._save_one_video_gts_preds(video)
def process_video(self, data_samples):
video_len = len(data_samples)
for frame_id in range(video_len):
img_data_sample = data_samples[frame_id].to_dict()
# load basic info
video = img_data_sample['img_path'].split(os.sep)[-3]
if self.seq_info[video]['seq_length'] == -1:
self.seq_info[video]['seq_length'] = video_len
self.transform_gt_and_pred(img_data_sample, video, frame_id)
if self.postprocess_tracklet_cfg:
info = self.seq_info[video]
pred_tracks = np.array(info['pred_tracks'])
for postprocess_tracklet_methods in \
self.postprocess_tracklet_methods:
pred_tracks = postprocess_tracklet_methods \
.forward(pred_tracks)
info['pred_tracks'] = pred_tracks
self._save_one_video_gts_preds(video)
def _save_one_video_gts_preds(self, seq: str) -> None:
"""Save the gt and prediction results."""
info = self.seq_info[seq]
# save predictions
pred_file = osp.join(self.pred_dir, seq + '.txt')
pred_tracks = np.array(info['pred_tracks'])
with open(pred_file, 'wt') as f:
for tracks in pred_tracks:
line = '%d,%d,%.3f,%.3f,%.3f,%.3f,%.3f,-1,-1,-1\n' % (
tracks[0], tracks[1], tracks[2], tracks[3], tracks[4],
tracks[5], tracks[6])
f.writelines(line)
info['pred_tracks'] = []
# save gts
if info['gt_tracks']:
gt_file = osp.join(self.gt_dir, seq + '.txt')
with open(gt_file, 'wt') as f:
for tracks in info['gt_tracks']:
line = '%d,%d,%d,%d,%d,%d,%d,%d,%.5f\n' % (
tracks[0], tracks[1], tracks[2], tracks[3], tracks[4],
tracks[5], tracks[6], tracks[7], tracks[8])
f.writelines(line)
info['gt_tracks'].clear()
# save seq info
with open(self.seqmap, 'a') as f:
f.write(seq + '\n')
f.close()
def compute_metrics(self, results: list = None) -> dict:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Defaults to None.
Returns:
dict: The computed metrics. The keys are the names of the metrics,
and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
# NOTICE: don't access `self.results` from the method.
eval_results = dict()
if self.format_only:
return eval_results
eval_config = trackeval.Evaluator.get_default_eval_config()
# need to split out the tracker name
# caused by the implementation of TrackEval
pred_dir_tmp = self.pred_dir.rsplit(osp.sep, 1)[0]
dataset_config = self.get_dataset_cfg(self.gt_dir, pred_dir_tmp)
evaluator = trackeval.Evaluator(eval_config)
dataset = [trackeval.datasets.MotChallenge2DBox(dataset_config)]
metrics = [
getattr(trackeval.metrics,
metric)(dict(METRICS=[metric], THRESHOLD=0.5))
for metric in self.metrics
]
output_res, _ = evaluator.evaluate(dataset, metrics)
output_res = output_res['MotChallenge2DBox'][
self.TRACKER]['COMBINED_SEQ']['pedestrian']
if 'HOTA' in self.metrics:
logger.info('Evaluating HOTA Metrics...')
eval_results['HOTA'] = np.average(output_res['HOTA']['HOTA'])
eval_results['AssA'] = np.average(output_res['HOTA']['AssA'])
eval_results['DetA'] = np.average(output_res['HOTA']['DetA'])
if 'CLEAR' in self.metrics:
logger.info('Evaluating CLEAR Metrics...')
eval_results['MOTA'] = np.average(output_res['CLEAR']['MOTA'])
eval_results['MOTP'] = np.average(output_res['CLEAR']['MOTP'])
eval_results['IDSW'] = np.average(output_res['CLEAR']['IDSW'])
eval_results['TP'] = np.average(output_res['CLEAR']['CLR_TP'])
eval_results['FP'] = np.average(output_res['CLEAR']['CLR_FP'])
eval_results['FN'] = np.average(output_res['CLEAR']['CLR_FN'])
eval_results['Frag'] = np.average(output_res['CLEAR']['Frag'])
eval_results['MT'] = np.average(output_res['CLEAR']['MT'])
eval_results['ML'] = np.average(output_res['CLEAR']['ML'])
if 'Identity' in self.metrics:
logger.info('Evaluating Identity Metrics...')
eval_results['IDF1'] = np.average(output_res['Identity']['IDF1'])
eval_results['IDTP'] = np.average(output_res['Identity']['IDTP'])
eval_results['IDFN'] = np.average(output_res['Identity']['IDFN'])
eval_results['IDFP'] = np.average(output_res['Identity']['IDFP'])
eval_results['IDP'] = np.average(output_res['Identity']['IDP'])
eval_results['IDR'] = np.average(output_res['Identity']['IDR'])
return eval_results
def evaluate(self, size: int = 1) -> dict:
"""Evaluate the model performance of the whole dataset after processing
all batches.
Args:
size (int): Length of the entire validation dataset.
Defaults to None.
Returns:
dict: Evaluation metrics dict on the val dataset. The keys are the
names of the metrics, and the values are corresponding results.
"""
# wait for all processes to complete prediction.
barrier()
# gather seq_info and convert the list of dict to a dict.
# convert self.seq_info to dict first to make it picklable.
gathered_seq_info = all_gather_object(dict(self.seq_info))
all_seq_info = dict()
for _seq_info in gathered_seq_info:
all_seq_info.update(_seq_info)
self.seq_info = all_seq_info
if is_main_process():
_metrics = self.compute_metrics() # type: ignore
# Add prefix to metric names
if self.prefix:
_metrics = {
'/'.join((self.prefix, k)): v
for k, v in _metrics.items()
}
metrics = [_metrics]
else:
metrics = [None] # type: ignore
broadcast_object_list(metrics)
# reset the results list
self.results.clear()
return metrics[0]
def get_dataset_cfg(self, gt_folder: str, tracker_folder: str):
"""Get default configs for trackeval.datasets.MotChallenge2DBox.
Args:
gt_folder (str): the name of the GT folder
tracker_folder (str): the name of the tracker folder
Returns:
Dataset Configs for MotChallenge2DBox.
"""
dataset_config = dict(
# Location of GT data
GT_FOLDER=gt_folder,
# Trackers location
TRACKERS_FOLDER=tracker_folder,
# Where to save eval results
# (if None, same as TRACKERS_FOLDER)
OUTPUT_FOLDER=None,
# Use self.TRACKER as the default tracker
TRACKERS_TO_EVAL=[self.TRACKER],
# Option values: ['pedestrian']
CLASSES_TO_EVAL=['pedestrian'],
# Option Values: 'MOT15', 'MOT16', 'MOT17', 'MOT20', 'DanceTrack'
BENCHMARK=self.benchmark,
# Option Values: 'train', 'test'
SPLIT_TO_EVAL='val' if self.benchmark == 'DanceTrack' else 'train',
# Whether tracker input files are zipped
INPUT_AS_ZIP=False,
# Whether to print current config
PRINT_CONFIG=True,
# Whether to perform preprocessing
# (never done for MOT15)
DO_PREPROC=False if self.benchmark == 'MOT15' else True,
# Tracker files are in
# TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
TRACKER_SUB_FOLDER='',
# Output files are saved in
# OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
OUTPUT_SUB_FOLDER='',
# Names of trackers to display
# (if None: TRACKERS_TO_EVAL)
TRACKER_DISPLAY_NAMES=None,
# Where seqmaps are found
# (if None: GT_FOLDER/seqmaps)
SEQMAP_FOLDER=None,
# Directly specify seqmap file
# (if none use seqmap_folder/benchmark-split_to_eval)
SEQMAP_FILE=self.seqmap,
# If not None, specify sequences to eval
# and their number of timesteps
SEQ_INFO={
seq: info['seq_length']
for seq, info in self.seq_info.items()
},
# '{gt_folder}/{seq}.txt'
GT_LOC_FORMAT='{gt_folder}/{seq}.txt',
# If False, data is in GT_FOLDER/BENCHMARK-SPLIT_TO_EVAL/ and in
# TRACKERS_FOLDER/BENCHMARK-SPLIT_TO_EVAL/tracker/
# If True, the middle 'benchmark-split' folder is skipped for both.
SKIP_SPLIT_FOL=True,
)
return dataset_config