TTP / mmdet /evaluation /metrics /coco_caption_metric.py
KyanChen's picture
Upload 1861 files
3b96cb1
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os
import tempfile
from typing import List, Optional
from mmengine.evaluator import BaseMetric
from mmengine.utils import track_iter_progress
from pycocotools.coco import COCO
from mmdet.registry import METRICS
try:
from pycocoevalcap.eval import COCOEvalCap
except ImportError:
COCOEvalCap = None
@METRICS.register_module()
class COCOCaptionMetric(BaseMetric):
"""Coco Caption evaluation wrapper.
Save the generated captions and transform into coco format.
Calling COCO API for caption metrics.
Args:
ann_file (str): the path for the COCO format caption ground truth
json file, load for evaluations.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Should be modified according to the
`retrieval_type` for unambiguous results. Defaults to TR.
"""
def __init__(self,
ann_file: str,
collect_device: str = 'cpu',
prefix: Optional[str] = None):
if COCOEvalCap is None:
raise RuntimeError(
'COCOEvalCap is not installed, please install it by: '
'pip install pycocoevalcap')
super().__init__(collect_device=collect_device, prefix=prefix)
self.ann_file = ann_file
def process(self, data_batch, data_samples):
"""Process one batch of data samples.
The processed results should be stored in ``self.results``, which will
be used to computed the metrics when all batches have been processed.
Args:
data_batch: A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from the model.
"""
for data_sample in data_samples:
result = dict()
result['caption'] = data_sample['pred_caption']
result['image_id'] = int(data_sample['img_id'])
# Save the result to `self.results`.
self.results.append(result)
def compute_metrics(self, results: List):
"""Compute the metrics from processed results.
Args:
results (dict): The processed results of each batch.
Returns:
Dict: The computed metrics. The keys are the names of the metrics,
and the values are corresponding results.
"""
# NOTICE: don't access `self.results` from the method.
with tempfile.TemporaryDirectory() as temp_dir:
eval_result_file = save_result(
result=results,
result_dir=temp_dir,
filename='caption_pred',
remove_duplicate='image_id',
)
coco_val = coco_caption_eval(eval_result_file, self.ann_file)
return coco_val
def save_result(result, result_dir, filename, remove_duplicate=''):
"""Saving predictions as json file for evaluation."""
# combine results from all processes
if remove_duplicate:
result_new = []
id_list = []
for res in track_iter_progress(result):
if res[remove_duplicate] not in id_list:
id_list.append(res[remove_duplicate])
result_new.append(res)
result = result_new
final_result_file_url = os.path.join(result_dir, '%s.json' % filename)
print(f'result file saved to {final_result_file_url}')
json.dump(result, open(final_result_file_url, 'w'))
return final_result_file_url
def coco_caption_eval(results_file, ann_file):
"""Evaluation between gt json and prediction json files."""
# create coco object and coco_result object
coco = COCO(ann_file)
coco_result = coco.loadRes(results_file)
# create coco_eval object by taking coco and coco_result
coco_eval = COCOEvalCap(coco, coco_result)
# make sure the image ids are the same
coco_eval.params['image_id'] = coco_result.getImgIds()
# This will take some times at the first run
coco_eval.evaluate()
# print output evaluation scores
for metric, score in coco_eval.eval.items():
print(f'{metric}: {score:.3f}')
return coco_eval.eval