Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os.path as osp | |
import mmengine | |
import torch | |
from mmengine.runner import CheckpointLoader | |
def convert_stdc(ckpt, stdc_type): | |
new_state_dict = {} | |
if stdc_type == 'STDC1': | |
stage_lst = ['0', '1', '2.0', '2.1', '3.0', '3.1', '4.0', '4.1'] | |
else: | |
stage_lst = [ | |
'0', '1', '2.0', '2.1', '2.2', '2.3', '3.0', '3.1', '3.2', '3.3', | |
'3.4', '4.0', '4.1', '4.2' | |
] | |
for k, v in ckpt.items(): | |
ori_k = k | |
flag = False | |
if 'cp.' in k: | |
k = k.replace('cp.', '') | |
if 'features.' in k: | |
num_layer = int(k.split('.')[1]) | |
feature_key_lst = 'features.' + str(num_layer) + '.' | |
stages_key_lst = 'stages.' + stage_lst[num_layer] + '.' | |
k = k.replace(feature_key_lst, stages_key_lst) | |
flag = True | |
if 'conv_list' in k: | |
k = k.replace('conv_list', 'layers') | |
flag = True | |
if 'avd_layer.' in k: | |
if 'avd_layer.0' in k: | |
k = k.replace('avd_layer.0', 'downsample.conv') | |
elif 'avd_layer.1' in k: | |
k = k.replace('avd_layer.1', 'downsample.bn') | |
flag = True | |
if flag: | |
new_state_dict[k] = ckpt[ori_k] | |
return new_state_dict | |
def main(): | |
parser = argparse.ArgumentParser( | |
description='Convert keys in official pretrained STDC1/2 to ' | |
'MMSegmentation style.') | |
parser.add_argument('src', help='src model path') | |
# The dst path must be a full path of the new checkpoint. | |
parser.add_argument('dst', help='save path') | |
parser.add_argument('type', help='model type: STDC1 or STDC2') | |
args = parser.parse_args() | |
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') | |
if 'state_dict' in checkpoint: | |
state_dict = checkpoint['state_dict'] | |
elif 'model' in checkpoint: | |
state_dict = checkpoint['model'] | |
else: | |
state_dict = checkpoint | |
assert args.type in ['STDC1', | |
'STDC2'], 'STD type should be STDC1 or STDC2!' | |
weight = convert_stdc(state_dict, args.type) | |
mmengine.mkdir_or_exist(osp.dirname(args.dst)) | |
torch.save(weight, args.dst) | |
if __name__ == '__main__': | |
main() | |