Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os.path as osp | |
from collections import OrderedDict | |
import mmengine | |
import torch | |
from mmengine.runner import CheckpointLoader | |
def convert_vitlayer(paras): | |
new_para_name = '' | |
if paras[0] == 'ln_1': | |
new_para_name = '.'.join(['ln1'] + paras[1:]) | |
elif paras[0] == 'attn': | |
new_para_name = '.'.join(['attn.attn'] + paras[1:]) | |
elif paras[0] == 'ln_2': | |
new_para_name = '.'.join(['ln2'] + paras[1:]) | |
elif paras[0] == 'mlp': | |
if paras[1] == 'c_fc': | |
new_para_name = '.'.join(['ffn.layers.0.0'] + paras[-1:]) | |
else: | |
new_para_name = '.'.join(['ffn.layers.1'] + paras[-1:]) | |
else: | |
print(f'Wrong for {paras}') | |
return new_para_name | |
def convert_translayer(paras): | |
new_para_name = '' | |
if paras[0] == 'attn': | |
new_para_name = '.'.join(['attentions.0.attn'] + paras[1:]) | |
elif paras[0] == 'ln_1': | |
new_para_name = '.'.join(['norms.0'] + paras[1:]) | |
elif paras[0] == 'ln_2': | |
new_para_name = '.'.join(['norms.1'] + paras[1:]) | |
elif paras[0] == 'mlp': | |
if paras[1] == 'c_fc': | |
new_para_name = '.'.join(['ffns.0.layers.0.0'] + paras[2:]) | |
elif paras[1] == 'c_proj': | |
new_para_name = '.'.join(['ffns.0.layers.1'] + paras[2:]) | |
else: | |
print(f'Wrong for {paras}') | |
else: | |
print(f'Wrong for {paras}') | |
return new_para_name | |
def convert_key_name(ckpt, visual_split): | |
new_ckpt = OrderedDict() | |
for k, v in ckpt.items(): | |
key_list = k.split('.') | |
if key_list[0] == 'visual': | |
new_transform_name = 'image_encoder' | |
if key_list[1] == 'class_embedding': | |
new_name = '.'.join([new_transform_name, 'cls_token']) | |
elif key_list[1] == 'positional_embedding': | |
new_name = '.'.join([new_transform_name, 'pos_embed']) | |
elif key_list[1] == 'conv1': | |
new_name = '.'.join([ | |
new_transform_name, 'patch_embed.projection', key_list[2] | |
]) | |
elif key_list[1] == 'ln_pre': | |
new_name = '.'.join( | |
[new_transform_name, key_list[1], key_list[2]]) | |
elif key_list[1] == 'transformer': | |
new_layer_name = 'layers' | |
layer_index = key_list[3] | |
paras = key_list[4:] | |
if int(layer_index) < visual_split: | |
new_para_name = convert_vitlayer(paras) | |
new_name = '.'.join([ | |
new_transform_name, new_layer_name, layer_index, | |
new_para_name | |
]) | |
else: | |
new_para_name = convert_translayer(paras) | |
new_transform_name = 'decode_head.rec_with_attnbias' | |
new_layer_name = 'layers' | |
layer_index = str(int(layer_index) - visual_split) | |
new_name = '.'.join([ | |
new_transform_name, new_layer_name, layer_index, | |
new_para_name | |
]) | |
elif key_list[1] == 'proj': | |
new_name = 'decode_head.rec_with_attnbias.proj.weight' | |
elif key_list[1] == 'ln_post': | |
new_name = k.replace('visual', 'decode_head.rec_with_attnbias') | |
else: | |
print(f'pop parameter: {k}') | |
continue | |
else: | |
text_encoder_name = 'text_encoder' | |
if key_list[0] == 'transformer': | |
layer_name = 'transformer' | |
layer_index = key_list[2] | |
paras = key_list[3:] | |
new_para_name = convert_translayer(paras) | |
new_name = '.'.join([ | |
text_encoder_name, layer_name, layer_index, new_para_name | |
]) | |
elif key_list[0] in [ | |
'positional_embedding', 'text_projection', 'bg_embed', | |
'attn_mask', 'logit_scale', 'token_embedding', 'ln_final' | |
]: | |
new_name = 'text_encoder.' + k | |
else: | |
print(f'pop parameter: {k}') | |
continue | |
new_ckpt[new_name] = v | |
return new_ckpt | |
def convert_tensor(ckpt): | |
cls_token = ckpt['image_encoder.cls_token'] | |
new_cls_token = cls_token.unsqueeze(0).unsqueeze(0) | |
ckpt['image_encoder.cls_token'] = new_cls_token | |
pos_embed = ckpt['image_encoder.pos_embed'] | |
new_pos_embed = pos_embed.unsqueeze(0) | |
ckpt['image_encoder.pos_embed'] = new_pos_embed | |
proj_weight = ckpt['decode_head.rec_with_attnbias.proj.weight'] | |
new_proj_weight = proj_weight.transpose(1, 0) | |
ckpt['decode_head.rec_with_attnbias.proj.weight'] = new_proj_weight | |
return ckpt | |
def main(): | |
parser = argparse.ArgumentParser( | |
description='Convert keys in timm pretrained vit models to ' | |
'MMSegmentation style.') | |
parser.add_argument('src', help='src model path or url') | |
# The dst path must be a full path of the new checkpoint. | |
parser.add_argument('dst', help='save path') | |
args = parser.parse_args() | |
if any([s in args.src for s in ['B-16', 'b16', 'base_patch16']]): | |
visual_split = 9 | |
elif any([s in args.src for s in ['L-14', 'l14', 'large_patch14']]): | |
visual_split = 18 | |
else: | |
print('Make sure the clip model is ViT-B/16 or ViT-L/14!') | |
visual_split = -1 | |
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') | |
if isinstance(checkpoint, torch.jit.RecursiveScriptModule): | |
state_dict = checkpoint.state_dict() | |
else: | |
if 'state_dict' in checkpoint: | |
# timm checkpoint | |
state_dict = checkpoint['state_dict'] | |
elif 'model' in checkpoint: | |
# deit checkpoint | |
state_dict = checkpoint['model'] | |
else: | |
state_dict = checkpoint | |
weight = convert_key_name(state_dict, visual_split) | |
weight = convert_tensor(weight) | |
mmengine.mkdir_or_exist(osp.dirname(args.dst)) | |
torch.save(weight, args.dst) | |
if __name__ == '__main__': | |
main() | |