Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa | |
# mmcv >= 2.0.1 | |
# mmengine >= 0.8.0 | |
from mmengine.config import read_base | |
with read_base(): | |
from .ssj_270_coco_instance import * | |
from mmdet.datasets import MultiImageMixDataset | |
from mmdet.datasets.transforms import CopyPaste | |
# dataset settings | |
dataset_type = CocoDataset | |
data_root = 'data/coco/' | |
image_size = (1024, 1024) | |
# Example to use different file client | |
# Method 1: simply set the data root and let the file I/O module | |
# automatically infer from prefix (not support LMDB and Memcache yet) | |
# data_root = 's3://openmmlab/datasets/detection/coco/' | |
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 | |
# backend_args = dict( | |
# backend='petrel', | |
# path_mapping=dict({ | |
# './data/': 's3://openmmlab/datasets/detection/', | |
# 'data/': 's3://openmmlab/datasets/detection/' | |
# })) | |
backend_args = None | |
# Standard Scale Jittering (SSJ) resizes and crops an image | |
# with a resize range of 0.8 to 1.25 of the original image size. | |
load_pipeline = [ | |
dict(type=LoadImageFromFile, backend_args=backend_args), | |
dict(type=LoadAnnotations, with_bbox=True, with_mask=True), | |
dict( | |
type=RandomResize, | |
scale=image_size, | |
ratio_range=(0.8, 1.25), | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_type='absolute_range', | |
crop_size=image_size, | |
recompute_bbox=True, | |
allow_negative_crop=True), | |
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), | |
dict(type=RandomFlip, prob=0.5), | |
dict(type=Pad, size=image_size), | |
] | |
train_pipeline = [ | |
dict(type=CopyPaste, max_num_pasted=100), | |
dict(type=PackDetInputs) | |
] | |
train_dataloader.update( | |
dict( | |
type=MultiImageMixDataset, | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_train2017.json', | |
data_prefix=dict(img='train2017/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=load_pipeline, | |
backend_args=backend_args), | |
pipeline=train_pipeline)) | |