Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa | |
# mmcv >= 2.0.1 | |
# mmengine >= 0.8.0 | |
from mmengine.config import read_base | |
with read_base(): | |
from .._base_.default_runtime import * | |
from mmcv.transforms import RandomChoiceResize | |
from mmengine.dataset import RepeatDataset | |
from mmengine.dataset.sampler import DefaultSampler, InfiniteSampler | |
from mmengine.optim import OptimWrapper | |
from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR | |
from mmengine.runner.loops import IterBasedTrainLoop, TestLoop, ValLoop | |
from torch.optim import SGD | |
from mmdet.datasets import AspectRatioBatchSampler, CocoDataset | |
from mmdet.datasets.transforms.formatting import PackDetInputs | |
from mmdet.datasets.transforms.loading import (FilterAnnotations, | |
LoadAnnotations, | |
LoadImageFromFile) | |
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic, | |
Pad, RandomCrop, RandomFlip, | |
RandomResize, Resize) | |
from mmdet.evaluation import CocoMetric | |
# dataset settings | |
dataset_type = CocoDataset | |
data_root = 'data/coco/' | |
# Example to use different file client | |
# Method 1: simply set the data root and let the file I/O module | |
# automatically infer from prefix (not support LMDB and Memcache yet) | |
# data_root = 's3://openmmlab/datasets/detection/coco/' | |
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 | |
# backend_args = dict( | |
# backend='petrel', | |
# path_mapping=dict({ | |
# './data/': 's3://openmmlab/datasets/detection/', | |
# 'data/': 's3://openmmlab/datasets/detection/' | |
# })) | |
backend_args = None | |
# Standard Scale Jittering (SSJ) resizes and crops an image | |
# with a resize range of 0.8 to 1.25 of the original image size. | |
train_pipeline = [ | |
dict(type=LoadImageFromFile, backend_args=backend_args), | |
dict(type=LoadAnnotations, with_bbox=True, with_mask=True), | |
dict( | |
type=RandomResize, | |
scale=image_size, | |
ratio_range=(0.8, 1.25), | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_type='absolute_range', | |
crop_size=image_size, | |
recompute_bbox=True, | |
allow_negative_crop=True), | |
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), | |
dict(type=RandomFlip, prob=0.5), | |
dict(type=PackDetInputs) | |
] | |
test_pipeline = [ | |
dict(type=LoadImageFromFile, backend_args=backend_args), | |
dict(type=Resize, scale=(1333, 800), keep_ratio=True), | |
dict(type=LoadAnnotations, with_bbox=True, with_mask=True), | |
dict( | |
type=PackDetInputs, | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader.update( | |
dict( | |
batch_size=2, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type=InfiniteSampler), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_train2017.json', | |
data_prefix=dict(img='train2017/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args))) | |
val_dataloader.update( | |
dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type=DefaultSampler, shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_val2017.json', | |
data_prefix=dict(img='val2017/'), | |
test_mode=True, | |
pipeline=test_pipeline, | |
backend_args=backend_args))) | |
test_dataloader = val_dataloader | |
val_evaluator.update( | |
dict( | |
type=CocoMetric, | |
ann_file=data_root + 'annotations/instances_val2017.json', | |
metric=['bbox', 'segm'], | |
format_only=False, | |
backend_args=backend_args)) | |
test_evaluator = val_evaluator | |
val_evaluator = dict( | |
type=CocoMetric, | |
ann_file=data_root + 'annotations/instances_val2017.json', | |
metric=['bbox', 'segm'], | |
format_only=False, | |
backend_args=backend_args) | |
test_evaluator = val_evaluator | |
# The model is trained by 270k iterations with batch_size 64, | |
# which is roughly equivalent to 144 epochs. | |
max_iter = 270000 | |
train_cfg.update( | |
dict(type=IterBasedTrainLoop, max_iters=max_iter, val_interval=10000)) | |
val_cfg.update(dict(type=ValLoop)) | |
test_cfg.update(dict(type=TestLoop)) | |
# learning rate | |
param_scheduler = [ | |
dict(type=LinearLR, start_factor=0.001, by_epoch=False, begin=0, end=1000), | |
dict( | |
type=MultiStepLR, | |
begin=0, | |
end=max_iter, | |
by_epoch=False, | |
milestones=[243000, 256500, 263250], | |
gamma=0.1) | |
] | |
# optimizer | |
optim_wrapper.update( | |
dict( | |
type=OptimWrapper, | |
optimizer=dict(type=SGD, lr=0.1, momentum=0.9, weight_decay=0.00004))) | |
# Default setting for scaling LR automatically | |
# - `enable` means enable scaling LR automatically | |
# or not by default. | |
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU). | |
auto_scale_lr.update(dict(base_batch_size=64)) | |
default_hooks.update(dict(checkpoint=dict(by_epoch=False, interval=10000))) | |
log_processor.update(dict(by_epoch=False)) | |