Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import glob | |
import os | |
import os.path as osp | |
import shutil | |
import tempfile | |
import zipfile | |
import mmcv | |
import numpy as np | |
from mmengine.utils import ProgressBar, mkdir_or_exist | |
from PIL import Image | |
iSAID_palette = \ | |
{ | |
0: (0, 0, 0), | |
1: (0, 0, 63), | |
2: (0, 63, 63), | |
3: (0, 63, 0), | |
4: (0, 63, 127), | |
5: (0, 63, 191), | |
6: (0, 63, 255), | |
7: (0, 127, 63), | |
8: (0, 127, 127), | |
9: (0, 0, 127), | |
10: (0, 0, 191), | |
11: (0, 0, 255), | |
12: (0, 191, 127), | |
13: (0, 127, 191), | |
14: (0, 127, 255), | |
15: (0, 100, 155) | |
} | |
iSAID_invert_palette = {v: k for k, v in iSAID_palette.items()} | |
def iSAID_convert_from_color(arr_3d, palette=iSAID_invert_palette): | |
"""RGB-color encoding to grayscale labels.""" | |
arr_2d = np.zeros((arr_3d.shape[0], arr_3d.shape[1]), dtype=np.uint8) | |
for c, i in palette.items(): | |
m = np.all(arr_3d == np.array(c).reshape(1, 1, 3), axis=2) | |
arr_2d[m] = i | |
return arr_2d | |
def slide_crop_image(src_path, out_dir, mode, patch_H, patch_W, overlap): | |
img = np.asarray(Image.open(src_path).convert('RGB')) | |
img_H, img_W, _ = img.shape | |
if img_H < patch_H and img_W > patch_W: | |
img = mmcv.impad(img, shape=(patch_H, img_W), pad_val=0) | |
img_H, img_W, _ = img.shape | |
elif img_H > patch_H and img_W < patch_W: | |
img = mmcv.impad(img, shape=(img_H, patch_W), pad_val=0) | |
img_H, img_W, _ = img.shape | |
elif img_H < patch_H and img_W < patch_W: | |
img = mmcv.impad(img, shape=(patch_H, patch_W), pad_val=0) | |
img_H, img_W, _ = img.shape | |
for x in range(0, img_W, patch_W - overlap): | |
for y in range(0, img_H, patch_H - overlap): | |
x_str = x | |
x_end = x + patch_W | |
if x_end > img_W: | |
diff_x = x_end - img_W | |
x_str -= diff_x | |
x_end = img_W | |
y_str = y | |
y_end = y + patch_H | |
if y_end > img_H: | |
diff_y = y_end - img_H | |
y_str -= diff_y | |
y_end = img_H | |
img_patch = img[y_str:y_end, x_str:x_end, :] | |
img_patch = Image.fromarray(img_patch.astype(np.uint8)) | |
image = osp.basename(src_path).split('.')[0] + '_' + str( | |
y_str) + '_' + str(y_end) + '_' + str(x_str) + '_' + str( | |
x_end) + '.png' | |
# print(image) | |
save_path_image = osp.join(out_dir, 'img_dir', mode, str(image)) | |
img_patch.save(save_path_image, format='BMP') | |
def slide_crop_label(src_path, out_dir, mode, patch_H, patch_W, overlap): | |
label = mmcv.imread(src_path, channel_order='rgb') | |
label = iSAID_convert_from_color(label) | |
img_H, img_W = label.shape | |
if img_H < patch_H and img_W > patch_W: | |
label = mmcv.impad(label, shape=(patch_H, img_W), pad_val=255) | |
img_H = patch_H | |
elif img_H > patch_H and img_W < patch_W: | |
label = mmcv.impad(label, shape=(img_H, patch_W), pad_val=255) | |
img_W = patch_W | |
elif img_H < patch_H and img_W < patch_W: | |
label = mmcv.impad(label, shape=(patch_H, patch_W), pad_val=255) | |
img_H = patch_H | |
img_W = patch_W | |
for x in range(0, img_W, patch_W - overlap): | |
for y in range(0, img_H, patch_H - overlap): | |
x_str = x | |
x_end = x + patch_W | |
if x_end > img_W: | |
diff_x = x_end - img_W | |
x_str -= diff_x | |
x_end = img_W | |
y_str = y | |
y_end = y + patch_H | |
if y_end > img_H: | |
diff_y = y_end - img_H | |
y_str -= diff_y | |
y_end = img_H | |
lab_patch = label[y_str:y_end, x_str:x_end] | |
lab_patch = Image.fromarray(lab_patch.astype(np.uint8), mode='P') | |
image = osp.basename(src_path).split('.')[0].split( | |
'_')[0] + '_' + str(y_str) + '_' + str(y_end) + '_' + str( | |
x_str) + '_' + str(x_end) + '_instance_color_RGB' + '.png' | |
lab_patch.save(osp.join(out_dir, 'ann_dir', mode, str(image))) | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert iSAID dataset to mmsegmentation format') | |
parser.add_argument('dataset_path', help='iSAID folder path') | |
parser.add_argument('--tmp_dir', help='path of the temporary directory') | |
parser.add_argument('-o', '--out_dir', help='output path') | |
parser.add_argument( | |
'--patch_width', | |
default=896, | |
type=int, | |
help='Width of the cropped image patch') | |
parser.add_argument( | |
'--patch_height', | |
default=896, | |
type=int, | |
help='Height of the cropped image patch') | |
parser.add_argument( | |
'--overlap_area', default=384, type=int, help='Overlap area') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
dataset_path = args.dataset_path | |
# image patch width and height | |
patch_H, patch_W = args.patch_width, args.patch_height | |
overlap = args.overlap_area # overlap area | |
if args.out_dir is None: | |
out_dir = osp.join('data', 'iSAID') | |
else: | |
out_dir = args.out_dir | |
print('Making directories...') | |
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'train')) | |
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'val')) | |
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'test')) | |
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'train')) | |
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'val')) | |
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'test')) | |
assert os.path.exists(os.path.join(dataset_path, 'train')), \ | |
f'train is not in {dataset_path}' | |
assert os.path.exists(os.path.join(dataset_path, 'val')), \ | |
f'val is not in {dataset_path}' | |
assert os.path.exists(os.path.join(dataset_path, 'test')), \ | |
f'test is not in {dataset_path}' | |
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: | |
for dataset_mode in ['train', 'val', 'test']: | |
# for dataset_mode in [ 'test']: | |
print(f'Extracting {dataset_mode}ing.zip...') | |
img_zipp_list = glob.glob( | |
os.path.join(dataset_path, dataset_mode, 'images', '*.zip')) | |
print('Find the data', img_zipp_list) | |
for img_zipp in img_zipp_list: | |
zip_file = zipfile.ZipFile(img_zipp) | |
zip_file.extractall(os.path.join(tmp_dir, dataset_mode, 'img')) | |
src_path_list = glob.glob( | |
os.path.join(tmp_dir, dataset_mode, 'img', 'images', '*.png')) | |
src_prog_bar = ProgressBar(len(src_path_list)) | |
for i, img_path in enumerate(src_path_list): | |
if dataset_mode != 'test': | |
slide_crop_image(img_path, out_dir, dataset_mode, patch_H, | |
patch_W, overlap) | |
else: | |
shutil.move(img_path, | |
os.path.join(out_dir, 'img_dir', dataset_mode)) | |
src_prog_bar.update() | |
if dataset_mode != 'test': | |
label_zipp_list = glob.glob( | |
os.path.join(dataset_path, dataset_mode, 'Semantic_masks', | |
'*.zip')) | |
for label_zipp in label_zipp_list: | |
zip_file = zipfile.ZipFile(label_zipp) | |
zip_file.extractall( | |
os.path.join(tmp_dir, dataset_mode, 'lab')) | |
lab_path_list = glob.glob( | |
os.path.join(tmp_dir, dataset_mode, 'lab', 'images', | |
'*.png')) | |
lab_prog_bar = ProgressBar(len(lab_path_list)) | |
for i, lab_path in enumerate(lab_path_list): | |
slide_crop_label(lab_path, out_dir, dataset_mode, patch_H, | |
patch_W, overlap) | |
lab_prog_bar.update() | |
print('Removing the temporary files...') | |
print('Done!') | |
if __name__ == '__main__': | |
main() | |