TTP / mmpretrain /apis /image_classification.py
KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
8.71 kB
# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from mmcv.image import imread
from mmengine.config import Config
from mmengine.dataset import Compose, default_collate
from mmpretrain.registry import TRANSFORMS
from mmpretrain.structures import DataSample
from .base import BaseInferencer, InputType, ModelType
from .model import list_models
class ImageClassificationInferencer(BaseInferencer):
"""The inferencer for image classification.
Args:
model (BaseModel | str | Config): A model name or a path to the config
file, or a :obj:`BaseModel` object. The model name can be found
by ``ImageClassificationInferencer.list_models()`` and you can also
query it in :doc:`/modelzoo_statistics`.
pretrained (str, optional): Path to the checkpoint. If None, it will
try to find a pre-defined weight from the model you specified
(only work if the ``model`` is a model name). Defaults to None.
device (str, optional): Device to run inference. If None, the available
device will be automatically used. Defaults to None.
**kwargs: Other keyword arguments to initialize the model (only work if
the ``model`` is a model name).
Example:
1. Use a pre-trained model in MMPreTrain to inference an image.
>>> from mmpretrain import ImageClassificationInferencer
>>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k')
>>> inferencer('demo/demo.JPEG')
[{'pred_score': array([...]),
'pred_label': 65,
'pred_score': 0.6649367809295654,
'pred_class': 'sea snake'}]
2. Use a config file and checkpoint to inference multiple images on GPU,
and save the visualization results in a folder.
>>> from mmpretrain import ImageClassificationInferencer
>>> inferencer = ImageClassificationInferencer(
model='configs/resnet/resnet50_8xb32_in1k.py',
pretrained='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
device='cuda')
>>> inferencer(['demo/dog.jpg', 'demo/bird.JPEG'], show_dir="./visualize/")
""" # noqa: E501
visualize_kwargs: set = {
'resize', 'rescale_factor', 'draw_score', 'show', 'show_dir',
'wait_time'
}
def __init__(self,
model: ModelType,
pretrained: Union[bool, str] = True,
device: Union[str, torch.device, None] = None,
classes=None,
**kwargs) -> None:
super().__init__(
model=model, pretrained=pretrained, device=device, **kwargs)
if classes is not None:
self.classes = classes
else:
self.classes = getattr(self.model, '_dataset_meta',
{}).get('classes')
def __call__(self,
inputs: InputType,
return_datasamples: bool = False,
batch_size: int = 1,
**kwargs) -> dict:
"""Call the inferencer.
Args:
inputs (str | array | list): The image path or array, or a list of
images.
return_datasamples (bool): Whether to return results as
:obj:`DataSample`. Defaults to False.
batch_size (int): Batch size. Defaults to 1.
resize (int, optional): Resize the short edge of the image to the
specified length before visualization. Defaults to None.
rescale_factor (float, optional): Rescale the image by the rescale
factor for visualization. This is helpful when the image is too
large or too small for visualization. Defaults to None.
draw_score (bool): Whether to draw the prediction scores
of prediction categories. Defaults to True.
show (bool): Whether to display the visualization result in a
window. Defaults to False.
wait_time (float): The display time (s). Defaults to 0, which means
"forever".
show_dir (str, optional): If not None, save the visualization
results in the specified directory. Defaults to None.
Returns:
list: The inference results.
"""
return super().__call__(
inputs,
return_datasamples=return_datasamples,
batch_size=batch_size,
**kwargs)
def _init_pipeline(self, cfg: Config) -> Callable:
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
from mmpretrain.datasets import remove_transform
# Image loading is finished in `self.preprocess`.
test_pipeline_cfg = remove_transform(test_pipeline_cfg,
'LoadImageFromFile')
test_pipeline = Compose(
[TRANSFORMS.build(t) for t in test_pipeline_cfg])
return test_pipeline
def preprocess(self, inputs: List[InputType], batch_size: int = 1):
def load_image(input_):
img = imread(input_)
if img is None:
raise ValueError(f'Failed to read image {input_}.')
return dict(
img=img,
img_shape=img.shape[:2],
ori_shape=img.shape[:2],
)
pipeline = Compose([load_image, self.pipeline])
chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
yield from map(default_collate, chunked_data)
def visualize(self,
ori_inputs: List[InputType],
preds: List[DataSample],
show: bool = False,
wait_time: int = 0,
resize: Optional[int] = None,
rescale_factor: Optional[float] = None,
draw_score=True,
show_dir=None):
if not show and show_dir is None:
return None
if self.visualizer is None:
from mmpretrain.visualization import UniversalVisualizer
self.visualizer = UniversalVisualizer()
visualization = []
for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)):
image = imread(input_)
if isinstance(input_, str):
# The image loaded from path is BGR format.
image = image[..., ::-1]
name = Path(input_).stem
else:
name = str(i)
if show_dir is not None:
show_dir = Path(show_dir)
show_dir.mkdir(exist_ok=True)
out_file = str((show_dir / name).with_suffix('.png'))
else:
out_file = None
self.visualizer.visualize_cls(
image,
data_sample,
classes=self.classes,
resize=resize,
show=show,
wait_time=wait_time,
rescale_factor=rescale_factor,
draw_gt=False,
draw_pred=True,
draw_score=draw_score,
name=name,
out_file=out_file)
visualization.append(self.visualizer.get_image())
if show:
self.visualizer.close()
return visualization
def postprocess(self,
preds: List[DataSample],
visualization: List[np.ndarray],
return_datasamples=False) -> dict:
if return_datasamples:
return preds
results = []
for data_sample in preds:
pred_scores = data_sample.pred_score
pred_score = float(torch.max(pred_scores).item())
pred_label = torch.argmax(pred_scores).item()
result = {
'pred_scores': pred_scores.detach().cpu().numpy(),
'pred_label': pred_label,
'pred_score': pred_score,
}
if self.classes is not None:
result['pred_class'] = self.classes[pred_label]
results.append(result)
return results
@staticmethod
def list_models(pattern: Optional[str] = None):
"""List all available model names.
Args:
pattern (str | None): A wildcard pattern to match model names.
Returns:
List[str]: a list of model names.
"""
return list_models(pattern=pattern, task='Image Classification')