Spaces:
Runtime error
Runtime error
File size: 6,908 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Copyright (c) OpenMMLab. All rights reserved.
"""MMPretrain provides 21 registry nodes to support using modules across
projects. Each node is a child of the root registry in MMEngine.
More details can be found at
https://mmengine.readthedocs.io/en/latest/tutorials/registry.html.
"""
from mmengine.registry import DATA_SAMPLERS as MMENGINE_DATA_SAMPLERS
from mmengine.registry import DATASETS as MMENGINE_DATASETS
from mmengine.registry import EVALUATOR as MMENGINE_EVALUATOR
from mmengine.registry import HOOKS as MMENGINE_HOOKS
from mmengine.registry import LOG_PROCESSORS as MMENGINE_LOG_PROCESSORS
from mmengine.registry import LOOPS as MMENGINE_LOOPS
from mmengine.registry import METRICS as MMENGINE_METRICS
from mmengine.registry import MODEL_WRAPPERS as MMENGINE_MODEL_WRAPPERS
from mmengine.registry import MODELS as MMENGINE_MODELS
from mmengine.registry import \
OPTIM_WRAPPER_CONSTRUCTORS as MMENGINE_OPTIM_WRAPPER_CONSTRUCTORS
from mmengine.registry import OPTIM_WRAPPERS as MMENGINE_OPTIM_WRAPPERS
from mmengine.registry import OPTIMIZERS as MMENGINE_OPTIMIZERS
from mmengine.registry import PARAM_SCHEDULERS as MMENGINE_PARAM_SCHEDULERS
from mmengine.registry import \
RUNNER_CONSTRUCTORS as MMENGINE_RUNNER_CONSTRUCTORS
from mmengine.registry import RUNNERS as MMENGINE_RUNNERS
from mmengine.registry import TASK_UTILS as MMENGINE_TASK_UTILS
from mmengine.registry import TRANSFORMS as MMENGINE_TRANSFORMS
from mmengine.registry import VISBACKENDS as MMENGINE_VISBACKENDS
from mmengine.registry import VISUALIZERS as MMENGINE_VISUALIZERS
from mmengine.registry import \
WEIGHT_INITIALIZERS as MMENGINE_WEIGHT_INITIALIZERS
from mmengine.registry import Registry
__all__ = [
'RUNNERS', 'RUNNER_CONSTRUCTORS', 'LOOPS', 'HOOKS', 'LOG_PROCESSORS',
'OPTIMIZERS', 'OPTIM_WRAPPERS', 'OPTIM_WRAPPER_CONSTRUCTORS',
'PARAM_SCHEDULERS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS',
'MODEL_WRAPPERS', 'WEIGHT_INITIALIZERS', 'BATCH_AUGMENTS', 'TASK_UTILS',
'METRICS', 'EVALUATORS', 'VISUALIZERS', 'VISBACKENDS'
]
#######################################################################
# mmpretrain.engine #
#######################################################################
# Runners like `EpochBasedRunner` and `IterBasedRunner`
RUNNERS = Registry(
'runner',
parent=MMENGINE_RUNNERS,
locations=['mmpretrain.engine'],
)
# Runner constructors that define how to initialize runners
RUNNER_CONSTRUCTORS = Registry(
'runner constructor',
parent=MMENGINE_RUNNER_CONSTRUCTORS,
locations=['mmpretrain.engine'],
)
# Loops which define the training or test process, like `EpochBasedTrainLoop`
LOOPS = Registry(
'loop',
parent=MMENGINE_LOOPS,
locations=['mmpretrain.engine'],
)
# Hooks to add additional functions during running, like `CheckpointHook`
HOOKS = Registry(
'hook',
parent=MMENGINE_HOOKS,
locations=['mmpretrain.engine'],
)
# Log processors to process the scalar log data.
LOG_PROCESSORS = Registry(
'log processor',
parent=MMENGINE_LOG_PROCESSORS,
locations=['mmpretrain.engine'],
)
# Optimizers to optimize the model weights, like `SGD` and `Adam`.
OPTIMIZERS = Registry(
'optimizer',
parent=MMENGINE_OPTIMIZERS,
locations=['mmpretrain.engine'],
)
# Optimizer wrappers to enhance the optimization process.
OPTIM_WRAPPERS = Registry(
'optimizer_wrapper',
parent=MMENGINE_OPTIM_WRAPPERS,
locations=['mmpretrain.engine'],
)
# Optimizer constructors to customize the hyperparameters of optimizers.
OPTIM_WRAPPER_CONSTRUCTORS = Registry(
'optimizer wrapper constructor',
parent=MMENGINE_OPTIM_WRAPPER_CONSTRUCTORS,
locations=['mmpretrain.engine'],
)
# Parameter schedulers to dynamically adjust optimization parameters.
PARAM_SCHEDULERS = Registry(
'parameter scheduler',
parent=MMENGINE_PARAM_SCHEDULERS,
locations=['mmpretrain.engine'],
)
#######################################################################
# mmpretrain.datasets #
#######################################################################
# Datasets like `ImageNet` and `CIFAR10`.
DATASETS = Registry(
'dataset',
parent=MMENGINE_DATASETS,
locations=['mmpretrain.datasets'],
)
# Samplers to sample the dataset.
DATA_SAMPLERS = Registry(
'data sampler',
parent=MMENGINE_DATA_SAMPLERS,
locations=['mmpretrain.datasets'],
)
# Transforms to process the samples from the dataset.
TRANSFORMS = Registry(
'transform',
parent=MMENGINE_TRANSFORMS,
locations=['mmpretrain.datasets'],
)
#######################################################################
# mmpretrain.models #
#######################################################################
# Neural network modules inheriting `nn.Module`.
MODELS = Registry(
'model',
parent=MMENGINE_MODELS,
locations=['mmpretrain.models'],
)
# Model wrappers like 'MMDistributedDataParallel'
MODEL_WRAPPERS = Registry(
'model_wrapper',
parent=MMENGINE_MODEL_WRAPPERS,
locations=['mmpretrain.models'],
)
# Weight initialization methods like uniform, xavier.
WEIGHT_INITIALIZERS = Registry(
'weight initializer',
parent=MMENGINE_WEIGHT_INITIALIZERS,
locations=['mmpretrain.models'],
)
# Batch augmentations like `Mixup` and `CutMix`.
BATCH_AUGMENTS = Registry(
'batch augment',
locations=['mmpretrain.models'],
)
# Task-specific modules like anchor generators and box coders
TASK_UTILS = Registry(
'task util',
parent=MMENGINE_TASK_UTILS,
locations=['mmpretrain.models'],
)
# Tokenizer to encode sequence
TOKENIZER = Registry(
'tokenizer',
locations=['mmpretrain.models'],
)
#######################################################################
# mmpretrain.evaluation #
#######################################################################
# Metrics to evaluate the model prediction results.
METRICS = Registry(
'metric',
parent=MMENGINE_METRICS,
locations=['mmpretrain.evaluation'],
)
# Evaluators to define the evaluation process.
EVALUATORS = Registry(
'evaluator',
parent=MMENGINE_EVALUATOR,
locations=['mmpretrain.evaluation'],
)
#######################################################################
# mmpretrain.visualization #
#######################################################################
# Visualizers to display task-specific results.
VISUALIZERS = Registry(
'visualizer',
parent=MMENGINE_VISUALIZERS,
locations=['mmpretrain.visualization'],
)
# Backends to save the visualization results, like TensorBoard, WandB.
VISBACKENDS = Registry(
'vis_backend',
parent=MMENGINE_VISBACKENDS,
locations=['mmpretrain.visualization'],
)
|