File size: 25,992 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# Copyright (c) OpenMMLab. All rights reserved.
import math
from numbers import Number
from typing import List, Optional, Sequence, Tuple, Union

import torch
import torch.nn.functional as F
from mmengine.model import (BaseDataPreprocessor, ImgDataPreprocessor,
                            stack_batch)

from mmpretrain.registry import MODELS
from mmpretrain.structures import (DataSample, MultiTaskDataSample,
                                   batch_label_to_onehot, cat_batch_labels,
                                   tensor_split)
from .batch_augments import RandomBatchAugment


@MODELS.register_module()
class ClsDataPreprocessor(BaseDataPreprocessor):
    """Image pre-processor for classification tasks.

    Comparing with the :class:`mmengine.model.ImgDataPreprocessor`,

    1. It won't do normalization if ``mean`` is not specified.
    2. It does normalization and color space conversion after stacking batch.
    3. It supports batch augmentations like mixup and cutmix.

    It provides the data pre-processing as follows

    - Collate and move data to the target device.
    - Pad inputs to the maximum size of current batch with defined
      ``pad_value``. The padding size can be divisible by a defined
      ``pad_size_divisor``
    - Stack inputs to batch_inputs.
    - Convert inputs from bgr to rgb if the shape of input is (3, H, W).
    - Normalize image with defined std and mean.
    - Do batch augmentations like Mixup and Cutmix during training.

    Args:
        mean (Sequence[Number], optional): The pixel mean of R, G, B channels.
            Defaults to None.
        std (Sequence[Number], optional): The pixel standard deviation of
            R, G, B channels. Defaults to None.
        pad_size_divisor (int): The size of padded image should be
            divisible by ``pad_size_divisor``. Defaults to 1.
        pad_value (Number): The padded pixel value. Defaults to 0.
        to_rgb (bool): whether to convert image from BGR to RGB.
            Defaults to False.
        to_onehot (bool): Whether to generate one-hot format gt-labels and set
            to data samples. Defaults to False.
        num_classes (int, optional): The number of classes. Defaults to None.
        batch_augments (dict, optional): The batch augmentations settings,
            including "augments" and "probs". For more details, see
            :class:`mmpretrain.models.RandomBatchAugment`.
    """

    def __init__(self,
                 mean: Sequence[Number] = None,
                 std: Sequence[Number] = None,
                 pad_size_divisor: int = 1,
                 pad_value: Number = 0,
                 to_rgb: bool = False,
                 to_onehot: bool = False,
                 num_classes: Optional[int] = None,
                 batch_augments: Optional[dict] = None):
        super().__init__()
        self.pad_size_divisor = pad_size_divisor
        self.pad_value = pad_value
        self.to_rgb = to_rgb
        self.to_onehot = to_onehot
        self.num_classes = num_classes

        if mean is not None:
            assert std is not None, 'To enable the normalization in ' \
                'preprocessing, please specify both `mean` and `std`.'
            # Enable the normalization in preprocessing.
            self._enable_normalize = True
            self.register_buffer('mean',
                                 torch.tensor(mean).view(-1, 1, 1), False)
            self.register_buffer('std',
                                 torch.tensor(std).view(-1, 1, 1), False)
        else:
            self._enable_normalize = False

        if batch_augments:
            self.batch_augments = RandomBatchAugment(**batch_augments)
            if not self.to_onehot:
                from mmengine.logging import MMLogger
                MMLogger.get_current_instance().info(
                    'Because batch augmentations are enabled, the data '
                    'preprocessor automatically enables the `to_onehot` '
                    'option to generate one-hot format labels.')
                self.to_onehot = True
        else:
            self.batch_augments = None

    def forward(self, data: dict, training: bool = False) -> dict:
        """Perform normalization, padding, bgr2rgb conversion and batch
        augmentation based on ``BaseDataPreprocessor``.

        Args:
            data (dict): data sampled from dataloader.
            training (bool): Whether to enable training time augmentation.

        Returns:
            dict: Data in the same format as the model input.
        """
        inputs = self.cast_data(data['inputs'])

        if isinstance(inputs, torch.Tensor):
            # The branch if use `default_collate` as the collate_fn in the
            # dataloader.

            # ------ To RGB ------
            if self.to_rgb and inputs.size(1) == 3:
                inputs = inputs.flip(1)

            # -- Normalization ---
            inputs = inputs.float()
            if self._enable_normalize:
                inputs = (inputs - self.mean) / self.std

            # ------ Padding -----
            if self.pad_size_divisor > 1:
                h, w = inputs.shape[-2:]

                target_h = math.ceil(
                    h / self.pad_size_divisor) * self.pad_size_divisor
                target_w = math.ceil(
                    w / self.pad_size_divisor) * self.pad_size_divisor
                pad_h = target_h - h
                pad_w = target_w - w
                inputs = F.pad(inputs, (0, pad_w, 0, pad_h), 'constant',
                               self.pad_value)
        else:
            # The branch if use `pseudo_collate` as the collate_fn in the
            # dataloader.

            processed_inputs = []
            for input_ in inputs:
                # ------ To RGB ------
                if self.to_rgb and input_.size(0) == 3:
                    input_ = input_.flip(0)

                # -- Normalization ---
                input_ = input_.float()
                if self._enable_normalize:
                    input_ = (input_ - self.mean) / self.std

                processed_inputs.append(input_)
            # Combine padding and stack
            inputs = stack_batch(processed_inputs, self.pad_size_divisor,
                                 self.pad_value)

        data_samples = data.get('data_samples', None)
        sample_item = data_samples[0] if data_samples is not None else None

        if isinstance(sample_item, DataSample):
            batch_label = None
            batch_score = None

            if 'gt_label' in sample_item:
                gt_labels = [sample.gt_label for sample in data_samples]
                batch_label, label_indices = cat_batch_labels(gt_labels)
                batch_label = batch_label.to(self.device)
            if 'gt_score' in sample_item:
                gt_scores = [sample.gt_score for sample in data_samples]
                batch_score = torch.stack(gt_scores).to(self.device)
            elif self.to_onehot and 'gt_label' in sample_item:
                assert batch_label is not None, \
                    'Cannot generate onehot format labels because no labels.'
                num_classes = self.num_classes or sample_item.get(
                    'num_classes')
                assert num_classes is not None, \
                    'Cannot generate one-hot format labels because not set ' \
                    '`num_classes` in `data_preprocessor`.'
                batch_score = batch_label_to_onehot(
                    batch_label, label_indices, num_classes).to(self.device)

            # ----- Batch Augmentations ----
            if (training and self.batch_augments is not None
                    and batch_score is not None):
                inputs, batch_score = self.batch_augments(inputs, batch_score)

            # ----- scatter labels and scores to data samples ---
            if batch_label is not None:
                for sample, label in zip(
                        data_samples, tensor_split(batch_label,
                                                   label_indices)):
                    sample.set_gt_label(label)
            if batch_score is not None:
                for sample, score in zip(data_samples, batch_score):
                    sample.set_gt_score(score)
        elif isinstance(sample_item, MultiTaskDataSample):
            data_samples = self.cast_data(data_samples)

        return {'inputs': inputs, 'data_samples': data_samples}


@MODELS.register_module()
class SelfSupDataPreprocessor(ImgDataPreprocessor):
    """Image pre-processor for operations, like normalization and bgr to rgb.

    Compared with the :class:`mmengine.ImgDataPreprocessor`, this module
    supports ``inputs`` as torch.Tensor or a list of torch.Tensor.
    """

    def __init__(self,
                 mean: Optional[Sequence[Union[float, int]]] = None,
                 std: Optional[Sequence[Union[float, int]]] = None,
                 pad_size_divisor: int = 1,
                 pad_value: Union[float, int] = 0,
                 to_rgb: bool = False,
                 bgr_to_rgb: bool = False,
                 rgb_to_bgr: bool = False,
                 non_blocking: Optional[bool] = False):
        super().__init__(
            mean=mean,
            std=std,
            pad_size_divisor=pad_size_divisor,
            pad_value=pad_value,
            bgr_to_rgb=bgr_to_rgb,
            rgb_to_bgr=rgb_to_bgr,
            non_blocking=non_blocking)

        self._channel_conversion = to_rgb or bgr_to_rgb or rgb_to_bgr

    def forward(
            self,
            data: dict,
            training: bool = False
    ) -> Tuple[List[torch.Tensor], Optional[list]]:
        """Performs normalization and bgr2rgb conversion based on
        ``BaseDataPreprocessor``.

        Args:
            data (dict): data sampled from dataloader.
            training (bool): Whether to enable training time augmentation. If
                subclasses override this method, they can perform different
                preprocessing strategies for training and testing based on the
                value of ``training``.
        Returns:
            Tuple[torch.Tensor, Optional[list]]: Data in the same format as the
            model input.
        """
        assert isinstance(data,
                          dict), 'Please use default_collate in dataloader, \
            instead of pseudo_collate.'

        data = [val for _, val in data.items()]
        batch_inputs, batch_data_samples = self.cast_data(data)

        # Here is what is different from :class:`mmengine.ImgDataPreprocessor`
        # Since there are multiple views for an image for some algorithms,
        # e.g. SimCLR, each item in inputs is a list, containing multi-views
        # for an image.
        if isinstance(batch_inputs, list):
            # channel transform
            if self._channel_conversion:
                batch_inputs = [
                    _input[:, [2, 1, 0], ...] for _input in batch_inputs
                ]

            # convert to float after channel conversion to ensure efficiency
            batch_inputs = [_input.float() for _input in batch_inputs]

            # normalization.
            if self._enable_normalize:
                batch_inputs = [(_input - self.mean) / self.std
                                for _input in batch_inputs]
        else:
            # channel transform
            if self._channel_conversion:
                batch_inputs = batch_inputs[:, [2, 1, 0], ...]

            # convert to float after channel conversion to ensure efficiency
            batch_inputs = batch_inputs.float()

            # normalization.
            if self._enable_normalize:
                batch_inputs = (batch_inputs - self.mean) / self.std

        return {'inputs': batch_inputs, 'data_samples': batch_data_samples}


@MODELS.register_module()
class TwoNormDataPreprocessor(SelfSupDataPreprocessor):
    """Image pre-processor for CAE, BEiT v1/v2, etc.

    Compared with the :class:`mmselfsup.SelfSupDataPreprocessor`, this module
    will normalize the prediction image and target image with different
    normalization parameters.

    Args:
        mean (Sequence[float or int], optional): The pixel mean of image
            channels. If ``to_rgb=True`` it means the mean value of R, G, B
            channels. If the length of `mean` is 1, it means all channels have
            the same mean value, or the input is a gray image. If it is not
            specified, images will not be normalized. Defaults to None.
        std (Sequence[float or int], optional): The pixel standard deviation of
            image channels. If ``to_rgb=True`` it means the standard deviation
            of R, G, B channels. If the length of `std` is 1, it means all
            channels have the same standard deviation, or the input is a gray
            image.  If it is not specified, images will not be normalized.
            Defaults to None.
        second_mean (Sequence[float or int], optional): The description is
            like ``mean``, it can be customized for targe image. Defaults to
            None.
        second_std (Sequence[float or int], optional): The description is
            like ``std``, it can be customized for targe image. Defaults to
            None.
        pad_size_divisor (int): The size of padded image should be
            divisible by ``pad_size_divisor``. Defaults to 1.
        pad_value (float or int): The padded pixel value. Defaults to 0.
        to_rgb (bool): whether to convert image from BGR to RGB.
            Defaults to False.
        non_blocking (bool): Whether block current process when transferring
            data to device. Defaults to False.
    """

    def __init__(self,
                 mean: Optional[Sequence[Union[float, int]]] = None,
                 std: Optional[Sequence[Union[float, int]]] = None,
                 second_mean: Sequence[Union[float, int]] = None,
                 second_std: Sequence[Union[float, int]] = None,
                 pad_size_divisor: int = 1,
                 pad_value: Union[float, int] = 0,
                 to_rgb: bool = False,
                 non_blocking: Optional[bool] = False):
        super().__init__(
            mean=mean,
            std=std,
            pad_size_divisor=pad_size_divisor,
            pad_value=pad_value,
            to_rgb=to_rgb,
            non_blocking=non_blocking)
        assert (second_mean is not None) and (second_std is not None), (
            'mean and std should not be None while using '
            '`TwoNormDataPreprocessor`')
        assert len(second_mean) == 3 or len(second_mean) == 1, (
            '`mean` should have 1 or 3 values, to be compatible with '
            f'RGB or gray image, but got {len(second_mean)} values')
        assert len(second_std) == 3 or len(second_std) == 1, (
            '`std` should have 1 or 3 values, to be compatible with RGB '
            f'or gray image, but got {len(std)} values')

        self.register_buffer('second_mean',
                             torch.tensor(second_mean).view(-1, 1, 1), False)
        self.register_buffer('second_std',
                             torch.tensor(second_std).view(-1, 1, 1), False)

    def forward(
            self,
            data: dict,
            training: bool = False
    ) -> Tuple[List[torch.Tensor], Optional[list]]:
        """Performs normalization and bgr2rgb conversion based on
        ``BaseDataPreprocessor``. The ``batch_inputs`` in forward function is a
        list.

        Args:
            data (dict): data sampled from dataloader.
            training (bool): Whether to enable training time augmentation. If
                subclasses override this method, they can perform different
                preprocessing strategies for training and testing based on the
                value of ``training``.
        Returns:
            Tuple[torch.Tensor, Optional[list]]: Data in the same format as the
                model input.
        """
        data = [val for _, val in data.items()]
        batch_inputs, batch_data_samples = self.cast_data(data)
        # channel transform
        if self._channel_conversion:
            batch_inputs = [
                _input[:, [2, 1, 0], ...] for _input in batch_inputs
            ]

        # convert to float after channel conversion to ensure efficiency
        batch_inputs = [_input.float() for _input in batch_inputs]

        # Normalization. Here is what is different from
        # :class:`mmselfsup.SelfSupDataPreprocessor`. Normalize the target
        # image and prediction image with different normalization params
        if self._enable_normalize:
            batch_inputs = [
                (batch_inputs[0] - self.mean) / self.std,
                (batch_inputs[1] - self.second_mean) / self.second_std
            ]

        return {'inputs': batch_inputs, 'data_samples': batch_data_samples}


@MODELS.register_module()
class VideoDataPreprocessor(BaseDataPreprocessor):
    """Video pre-processor for operations, like normalization and bgr to rgb
    conversion .

    Compared with the :class:`mmaction.ActionDataPreprocessor`, this module
    supports ``inputs`` as torch.Tensor or a list of torch.Tensor.

    Args:
        mean (Sequence[float or int, optional): The pixel mean of channels
            of images or stacked optical flow. Defaults to None.
        std (Sequence[float or int], optional): The pixel standard deviation
            of channels of images or stacked optical flow. Defaults to None.
        pad_size_divisor (int): The size of padded image should be
            divisible by ``pad_size_divisor``. Defaults to 1.
        pad_value (float or int): The padded pixel value. Defaults to 0.
        to_rgb (bool): Whether to convert image from BGR to RGB.
            Defaults to False.
        format_shape (str): Format shape of input data.
            Defaults to ``'NCHW'``.
    """

    def __init__(self,
                 mean: Optional[Sequence[Union[float, int]]] = None,
                 std: Optional[Sequence[Union[float, int]]] = None,
                 pad_size_divisor: int = 1,
                 pad_value: Union[float, int] = 0,
                 to_rgb: bool = False,
                 format_shape: str = 'NCHW') -> None:
        super().__init__()
        self.pad_size_divisor = pad_size_divisor
        self.pad_value = pad_value
        self.to_rgb = to_rgb
        self.format_shape = format_shape

        if mean is not None:
            assert std is not None, 'To enable the normalization in ' \
                                    'preprocessing, please specify both ' \
                                    '`mean` and `std`.'
            # Enable the normalization in preprocessing.
            self._enable_normalize = True
            if self.format_shape == 'NCHW':
                normalizer_shape = (-1, 1, 1)
            elif self.format_shape == 'NCTHW':
                normalizer_shape = (-1, 1, 1, 1)
            else:
                raise ValueError(f'Invalid format shape: {format_shape}')

            self.register_buffer(
                'mean',
                torch.tensor(mean, dtype=torch.float32).view(normalizer_shape),
                False)
            self.register_buffer(
                'std',
                torch.tensor(std, dtype=torch.float32).view(normalizer_shape),
                False)
        else:
            self._enable_normalize = False

    def forward(
            self,
            data: dict,
            training: bool = False
    ) -> Tuple[List[torch.Tensor], Optional[list]]:
        """Performs normalization、padding and bgr2rgb conversion based on
        ``BaseDataPreprocessor``.

        Args:
            data (dict): data sampled from dataloader.
            training (bool): Whether to enable training time augmentation. If
                subclasses override this method, they can perform different
                preprocessing strategies for training and testing based on the
                value of ``training``.
        Returns:
            Tuple[List[torch.Tensor], Optional[list]]: Data in the same format
                as the model input.
        """

        data = [val for _, val in data.items()]
        batch_inputs, batch_data_samples = self.cast_data(data)

        if isinstance(batch_inputs, list):
            # channel transform
            if self.to_rgb:
                if self.format_shape == 'NCHW':
                    batch_inputs = [
                        _input[..., [2, 1, 0], :, :] for _input in batch_inputs
                    ]
                elif self.format_shape == 'NCTHW':
                    batch_inputs = [
                        _input[..., [2, 1, 0], :, :, :]
                        for _input in batch_inputs
                    ]
                else:
                    raise ValueError(
                        f'Invalid format shape: {self.format_shape}')

            # convert to float after channel conversion to ensure efficiency
            batch_inputs = [_input.float() for _input in batch_inputs]

            # normalization
            if self._enable_normalize:
                batch_inputs = [(_input - self.mean) / self.std
                                for _input in batch_inputs]

        else:
            # channel transform
            if self.to_rgb:
                if self.format_shape == 'NCHW':
                    batch_inputs = batch_inputs[..., [2, 1, 0], :, :]
                elif self.format_shape == 'NCTHW':
                    batch_inputs = batch_inputs[..., [2, 1, 0], :, :, :]
                else:
                    raise ValueError(
                        f'Invalid format shape: {self.format_shape}')

            # convert to float after channel conversion to ensure efficiency
            batch_inputs = batch_inputs.float()

            # normalization
            if self._enable_normalize:
                batch_inputs = (batch_inputs - self.mean) / self.std

        return {'inputs': batch_inputs, 'data_samples': batch_data_samples}


@MODELS.register_module()
class MultiModalDataPreprocessor(BaseDataPreprocessor):
    """Data pre-processor for image-text multimodality tasks.

    It provides the data pre-processing as follows

    - Collate and move data to the target device.
    - Pad inputs to the maximum size of current batch with defined
      ``pad_value``. The padding size can be divisible by a defined
      ``pad_size_divisor``
    - Stack inputs to batch_inputs.
    - Convert inputs from bgr to rgb if the shape of input is (3, H, W).
    - Normalize image with defined std and mean.

    Args:
        mean (Sequence[Number], optional): The pixel mean of R, G, B channels.
            Defaults to None.
        std (Sequence[Number], optional): The pixel standard deviation of
            R, G, B channels. Defaults to None.
        pad_size_divisor (int): The size of padded image should be
            divisible by ``pad_size_divisor``. Defaults to 1.
        pad_value (Number): The padded pixel value. Defaults to 0.
        to_rgb (bool): whether to convert image from BGR to RGB.
            Defaults to False.
    """

    def __init__(
        self,
        mean: Sequence[Number] = None,
        std: Sequence[Number] = None,
        pad_size_divisor: int = 1,
        pad_value: Number = 0,
        to_rgb: bool = False,
    ):
        super().__init__()
        self.pad_size_divisor = pad_size_divisor
        self.pad_value = pad_value
        self.to_rgb = to_rgb

        if mean is not None:
            assert std is not None, 'To enable the normalization in ' \
                'preprocessing, please specify both `mean` and `std`.'
            # Enable the normalization in preprocessing.
            self._enable_normalize = True
            self.register_buffer('mean',
                                 torch.tensor(mean).view(-1, 1, 1), False)
            self.register_buffer('std',
                                 torch.tensor(std).view(-1, 1, 1), False)
        else:
            self._enable_normalize = False

    def forward(self, data: dict, training: bool = False) -> dict:
        """Perform normalization, padding, bgr2rgb conversion and batch
        augmentation based on ``BaseDataPreprocessor``.

        Args:
            data (dict): data sampled from dataloader.
            training (bool): Whether to enable training time augmentation.

        Returns:
            dict: Data in the same format as the model input.
        """
        data = self.cast_data(data)

        imgs = data.get('inputs', None)

        def _process_img(img):
            # ------ To RGB ------
            if self.to_rgb and img.size(1) == 3:
                img = img.flip(1)

            # -- Normalization ---
            img = img.float()
            if self._enable_normalize:
                img = (img - self.mean) / self.std

            # ------ Padding -----
            if self.pad_size_divisor > 1:
                h, w = img.shape[-2:]

                target_h = math.ceil(
                    h / self.pad_size_divisor) * self.pad_size_divisor
                target_w = math.ceil(
                    w / self.pad_size_divisor) * self.pad_size_divisor
                pad_h = target_h - h
                pad_w = target_w - w
                img = F.pad(img, (0, pad_w, 0, pad_h), 'constant',
                            self.pad_value)
            return img

        if isinstance(imgs, torch.Tensor):
            imgs = _process_img(imgs)
        elif isinstance(imgs, Sequence):
            # B, T, C, H, W
            imgs = torch.stack([_process_img(img) for img in imgs], dim=1)
        elif imgs is not None:
            raise ValueError(f'{type(imgs)} is not supported for imgs inputs.')

        data_samples = data.get('data_samples', None)

        return {'images': imgs, 'data_samples': data_samples}