File size: 2,637 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from mmengine.model import BaseModule

from mmpretrain.registry import MODELS


@MODELS.register_module()
class DenseCLNeck(BaseModule):
    """The non-linear neck of DenseCL.

    Single and dense neck in parallel: fc-relu-fc, conv-relu-conv.
    Borrowed from the authors' `code <https://github.com/WXinlong/DenseCL>`_.

    Args:
        in_channels (int): Number of input channels.
        hid_channels (int): Number of hidden channels.
        out_channels (int): Number of output channels.
        num_grid (int): The grid size of dense features. Defaults to None.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 hid_channels: int,
                 out_channels: int,
                 num_grid: Optional[int] = None,
                 init_cfg: Optional[Union[dict, List[dict]]] = None) -> None:
        super().__init__(init_cfg)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.mlp = nn.Sequential(
            nn.Linear(in_channels, hid_channels), nn.ReLU(inplace=True),
            nn.Linear(hid_channels, out_channels))

        self.with_pool = True if num_grid is not None else False
        if self.with_pool:
            self.pool = nn.AdaptiveAvgPool2d((num_grid, num_grid))
        self.mlp2 = nn.Sequential(
            nn.Conv2d(in_channels, hid_channels, 1), nn.ReLU(inplace=True),
            nn.Conv2d(hid_channels, out_channels, 1))
        self.avgpool2 = nn.AdaptiveAvgPool2d((1, 1))

    def forward(self, x: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]:
        """Forward function of neck.

        Args:
            x (Tuple[torch.Tensor]): feature map of backbone.

        Returns:
            Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
              - ``avgpooled_x``: Global feature vectors.
              - ``x``: Dense feature vectors.
              - ``avgpooled_x2``: Dense feature vectors for queue.
        """
        assert len(x) == 1
        x = x[0]

        avgpooled_x = self.avgpool(x)
        avgpooled_x = self.mlp(avgpooled_x.view(avgpooled_x.size(0), -1))

        if self.with_pool:
            x = self.pool(x)  # sxs
        x = self.mlp2(x)  # sxs: bxdxsxs
        avgpooled_x2 = self.avgpool2(x)  # 1x1: bxdx1x1
        x = x.view(x.size(0), x.size(1), -1)  # bxdxs^2
        avgpooled_x2 = avgpooled_x2.view(avgpooled_x2.size(0), -1)  # bxd
        return avgpooled_x, x, avgpooled_x2