File size: 6,547 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) OpenMMLab. All rights reserved.

import torch
from mmengine.model import is_model_wrapper
from mmengine.runner import TestLoop, ValLoop, autocast

from mmpretrain.registry import LOOPS


@LOOPS.register_module()
class RetrievalValLoop(ValLoop):
    """Loop for multimodal retrieval val.

    Args:
        runner (Runner): A reference of runner.
        dataloader (Dataloader or dict): A dataloader object or a dict to
            build a dataloader.
        evaluator (Evaluator or dict or list): Used for computing metrics.
        fp16 (bool): Whether to enable fp16 valing. Defaults to
            False.
    """

    def run(self) -> dict:
        """Launch val."""
        self.runner.call_hook('before_val')
        self.runner.call_hook('before_val_epoch')
        self.runner.model.eval()

        feats_local = []
        data_samples_local = []

        for idx, data_batch in enumerate(self.dataloader):
            with torch.no_grad():
                self.runner.call_hook(
                    'before_val_iter', batch_idx=idx, data_batch=data_batch)
                # predictions should be sequence of BaseDataElement
                with autocast(enabled=self.fp16):
                    if is_model_wrapper(self.runner.model):
                        data_preprocessor = self.runner.model.module.data_preprocessor  # noqa: E501
                    else:
                        data_preprocessor = self.runner.model.data_preprocessor

                    # get features for retrieval instead of data samples
                    data_batch = data_preprocessor(data_batch, False)
                    feats = self.runner.model._run_forward(
                        data_batch, mode='tensor')
                    feats_local.append(feats)
                    data_samples_local.extend(data_batch['data_samples'])
                self.runner.call_hook(
                    'after_val_iter',
                    batch_idx=idx,
                    data_batch=data_batch,
                    outputs=feats)

        # concatenate different features
        feats_local = {
            k: torch.cat([dic[k] for dic in feats_local])
            for k in feats_local[0]
        }

        # get predictions
        if is_model_wrapper(self.runner.model):
            predict_all_fn = self.runner.model.module.predict_all
        else:
            predict_all_fn = self.runner.model.predict_all

        img_size = self.dataloader.dataset.img_size
        text_size = self.dataloader.dataset.text_size
        with torch.no_grad():
            i2t_data_samples, t2i_data_samples = predict_all_fn(
                feats_local,
                data_samples_local,
                num_images=img_size,
                num_texts=text_size,
            )

        # process in evaluator and compute metrics
        self.evaluator.process(i2t_data_samples, None)
        i2t_metrics = self.evaluator.evaluate(img_size)
        i2t_metrics = {f'i2t/{k}': v for k, v in i2t_metrics.items()}
        self.evaluator.process(t2i_data_samples, None)
        t2i_metrics = self.evaluator.evaluate(text_size)
        t2i_metrics = {f't2i/{k}': v for k, v in t2i_metrics.items()}
        metrics = {**i2t_metrics, **t2i_metrics}

        self.runner.call_hook('after_val_epoch', metrics=metrics)
        self.runner.call_hook('after_val')
        return metrics


@LOOPS.register_module()
class RetrievalTestLoop(TestLoop):
    """Loop for multimodal retrieval test.

    Args:
        runner (Runner): A reference of runner.
        dataloader (Dataloader or dict): A dataloader object or a dict to
            build a dataloader.
        evaluator (Evaluator or dict or list): Used for computing metrics.
        fp16 (bool): Whether to enable fp16 testing. Defaults to
            False.
    """

    def run(self) -> dict:
        """Launch test."""
        self.runner.call_hook('before_test')
        self.runner.call_hook('before_test_epoch')
        self.runner.model.eval()

        feats_local = []
        data_samples_local = []

        for idx, data_batch in enumerate(self.dataloader):
            with torch.no_grad():
                self.runner.call_hook(
                    'before_test_iter', batch_idx=idx, data_batch=data_batch)
                # predictions should be sequence of BaseDataElement
                with autocast(enabled=self.fp16):
                    if is_model_wrapper(self.runner.model):
                        data_preprocessor = self.runner.model.module.data_preprocessor  # noqa: E501
                    else:
                        data_preprocessor = self.runner.model.data_preprocessor
                    # get features for retrieval instead of data samples
                    data_batch = data_preprocessor(data_batch, False)
                    feats = self.runner.model._run_forward(
                        data_batch, mode='tensor')
                    feats_local.append(feats)
                    data_samples_local.extend(data_batch['data_samples'])
                self.runner.call_hook(
                    'after_test_iter',
                    batch_idx=idx,
                    data_batch=data_batch,
                    outputs=feats)

        # concatenate different features
        feats_local = {
            k: torch.cat([dic[k] for dic in feats_local])
            for k in feats_local[0]
        }

        # get predictions
        if is_model_wrapper(self.runner.model):
            predict_all_fn = self.runner.model.module.predict_all
        else:
            predict_all_fn = self.runner.model.predict_all

        img_size = self.dataloader.dataset.img_size
        text_size = self.dataloader.dataset.text_size
        with torch.no_grad():
            i2t_data_samples, t2i_data_samples = predict_all_fn(
                feats_local,
                data_samples_local,
                num_images=img_size,
                num_texts=text_size,
            )

        # process in evaluator and compute metrics
        self.evaluator.process(i2t_data_samples, None)
        i2t_metrics = self.evaluator.evaluate(img_size)
        i2t_metrics = {f'i2t/{k}': v for k, v in i2t_metrics.items()}
        self.evaluator.process(t2i_data_samples, None)
        t2i_metrics = self.evaluator.evaluate(text_size)
        t2i_metrics = {f't2i/{k}': v for k, v in t2i_metrics.items()}
        metrics = {**i2t_metrics, **t2i_metrics}

        self.runner.call_hook('after_test_epoch', metrics=metrics)
        self.runner.call_hook('after_test')
        return metrics