Spaces:
Runtime error
Runtime error
File size: 7,402 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Copyright (c) OpenMMLab. All rights reserved.
import xml.etree.ElementTree as ET
from typing import List, Optional, Union
from mmengine import get_file_backend, list_from_file
from mmengine.logging import MMLogger
from mmpretrain.registry import DATASETS
from .base_dataset import expanduser
from .categories import VOC2007_CATEGORIES
from .multi_label import MultiLabelDataset
@DATASETS.register_module()
class VOC(MultiLabelDataset):
"""`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Dataset.
After decompression, the dataset directory structure is as follows:
VOC dataset directory: ::
VOC2007
βββ JPEGImages
β βββ xxx.jpg
β βββ xxy.jpg
β βββ ...
βββ Annotations
β βββ xxx.xml
β βββ xxy.xml
β βββ ...
βββ ImageSets
βββ Main
βββ train.txt
βββ val.txt
βββ trainval.txt
βββ test.txt
βββ ...
Extra difficult label is in VOC annotations, we will use
`gt_label_difficult` to record the difficult labels in each sample
and corresponding evaluation should take care of this field
to calculate metrics. Usually, difficult labels are reckoned as
negative in defaults.
Args:
data_root (str): The root directory for VOC dataset.
split (str, optional): The dataset split, supports "train",
"val", "trainval", and "test". Default to "trainval".
image_set_path (str, optional): The path of image set, The file which
lists image ids of the sub dataset, and this path is relative
to ``data_root``. Default to ''.
data_prefix (dict): Prefix for data and annotation, keyword
'img_path' and 'ann_path' can be set. Defaults to be
``dict(img_path='JPEGImages', ann_path='Annotations')``.
metainfo (dict, optional): Meta information for dataset, such as
categories information. Defaults to None.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
Examples:
>>> from mmpretrain.datasets import VOC
>>> train_dataset = VOC(data_root='data/VOC2007', split='trainval')
>>> train_dataset
Dataset VOC
Number of samples: 5011
Number of categories: 20
Prefix of dataset: data/VOC2007
Path of image set: data/VOC2007/ImageSets/Main/trainval.txt
Prefix of images: data/VOC2007/JPEGImages
Prefix of annotations: data/VOC2007/Annotations
>>> test_dataset = VOC(data_root='data/VOC2007', split='test')
>>> test_dataset
Dataset VOC
Number of samples: 4952
Number of categories: 20
Prefix of dataset: data/VOC2007
Path of image set: data/VOC2007/ImageSets/Main/test.txt
Prefix of images: data/VOC2007/JPEGImages
Prefix of annotations: data/VOC2007/Annotations
""" # noqa: E501
METAINFO = {'classes': VOC2007_CATEGORIES}
def __init__(self,
data_root: str,
split: str = 'trainval',
image_set_path: str = '',
data_prefix: Union[str, dict] = dict(
img_path='JPEGImages', ann_path='Annotations'),
test_mode: bool = False,
metainfo: Optional[dict] = None,
**kwargs):
self.backend = get_file_backend(data_root, enable_singleton=True)
if split:
splits = ['train', 'val', 'trainval', 'test']
assert split in splits, \
f"The split must be one of {splits}, but get '{split}'"
self.split = split
if not data_prefix:
data_prefix = dict(
img_path='JPEGImages', ann_path='Annotations')
if not image_set_path:
image_set_path = self.backend.join_path(
'ImageSets', 'Main', f'{split}.txt')
# To handle the BC-breaking
if (split == 'train' or split == 'trainval') and test_mode:
logger = MMLogger.get_current_instance()
logger.warning(f'split="{split}" but test_mode=True. '
f'The {split} set will be used.')
if isinstance(data_prefix, str):
data_prefix = dict(img_path=expanduser(data_prefix))
assert isinstance(data_prefix, dict) and 'img_path' in data_prefix, \
'`data_prefix` must be a dict with key img_path'
if (split and split not in ['val', 'test']) or not test_mode:
assert 'ann_path' in data_prefix and data_prefix[
'ann_path'] is not None, \
'"ann_path" must be set in `data_prefix`' \
'when validation or test set is used.'
self.data_root = data_root
self.image_set_path = self.backend.join_path(data_root, image_set_path)
super().__init__(
ann_file='',
metainfo=metainfo,
data_root=data_root,
data_prefix=data_prefix,
test_mode=test_mode,
**kwargs)
@property
def ann_prefix(self):
"""The prefix of images."""
if 'ann_path' in self.data_prefix:
return self.data_prefix['ann_path']
else:
return None
def _get_labels_from_xml(self, img_id):
"""Get gt_labels and labels_difficult from xml file."""
xml_path = self.backend.join_path(self.ann_prefix, f'{img_id}.xml')
content = self.backend.get(xml_path)
root = ET.fromstring(content)
labels, labels_difficult = set(), set()
for obj in root.findall('object'):
label_name = obj.find('name').text
# in case customized dataset has wrong labels
# or CLASSES has been override.
if label_name not in self.CLASSES:
continue
label = self.class_to_idx[label_name]
difficult = int(obj.find('difficult').text)
if difficult:
labels_difficult.add(label)
else:
labels.add(label)
return list(labels), list(labels_difficult)
def load_data_list(self):
"""Load images and ground truth labels."""
data_list = []
img_ids = list_from_file(self.image_set_path)
for img_id in img_ids:
img_path = self.backend.join_path(self.img_prefix, f'{img_id}.jpg')
labels, labels_difficult = None, None
if self.ann_prefix is not None:
labels, labels_difficult = self._get_labels_from_xml(img_id)
info = dict(
img_path=img_path,
gt_label=labels,
gt_label_difficult=labels_difficult)
data_list.append(info)
return data_list
def extra_repr(self) -> List[str]:
"""The extra repr information of the dataset."""
body = [
f'Prefix of dataset: \t{self.data_root}',
f'Path of image set: \t{self.image_set_path}',
f'Prefix of images: \t{self.img_prefix}',
f'Prefix of annotations: \t{self.ann_prefix}'
]
return body
|