Spaces:
Runtime error
Runtime error
File size: 5,461 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import numpy as np
from mmengine.dataset import BaseDataset, force_full_init
from mmpretrain.registry import DATASETS
@DATASETS.register_module()
class KFoldDataset:
"""A wrapper of dataset for K-Fold cross-validation.
K-Fold cross-validation divides all the samples in groups of samples,
called folds, of almost equal sizes. And we use k-1 of folds to do training
and use the fold left to do validation.
Args:
dataset (:obj:`mmengine.dataset.BaseDataset` | dict): The dataset to be
divided
fold (int): The fold used to do validation. Defaults to 0.
num_splits (int): The number of all folds. Defaults to 5.
test_mode (bool): Use the training dataset or validation dataset.
Defaults to False.
seed (int, optional): The seed to shuffle the dataset before splitting.
If None, not shuffle the dataset. Defaults to None.
"""
def __init__(self,
dataset,
fold=0,
num_splits=5,
test_mode=False,
seed=None):
if isinstance(dataset, dict):
self.dataset = DATASETS.build(dataset)
# Init the dataset wrapper lazily according to the dataset setting.
lazy_init = dataset.get('lazy_init', False)
elif isinstance(dataset, BaseDataset):
self.dataset = dataset
else:
raise TypeError(f'Unsupported dataset type {type(dataset)}.')
self._metainfo = getattr(self.dataset, 'metainfo', {})
self.fold = fold
self.num_splits = num_splits
self.test_mode = test_mode
self.seed = seed
self._fully_initialized = False
if not lazy_init:
self.full_init()
@property
def metainfo(self) -> dict:
"""Get the meta information of ``self.dataset``.
Returns:
dict: Meta information of the dataset.
"""
# Prevent `self._metainfo` from being modified by outside.
return copy.deepcopy(self._metainfo)
def full_init(self):
"""fully initialize the dataset."""
if self._fully_initialized:
return
self.dataset.full_init()
ori_len = len(self.dataset)
indices = list(range(ori_len))
if self.seed is not None:
rng = np.random.default_rng(self.seed)
rng.shuffle(indices)
test_start = ori_len * self.fold // self.num_splits
test_end = ori_len * (self.fold + 1) // self.num_splits
if self.test_mode:
indices = indices[test_start:test_end]
else:
indices = indices[:test_start] + indices[test_end:]
self._ori_indices = indices
self.dataset = self.dataset.get_subset(indices)
self._fully_initialized = True
@force_full_init
def _get_ori_dataset_idx(self, idx: int) -> int:
"""Convert global idx to local index.
Args:
idx (int): Global index of ``KFoldDataset``.
Returns:
int: The original index in the whole dataset.
"""
return self._ori_indices[idx]
@force_full_init
def get_data_info(self, idx: int) -> dict:
"""Get annotation by index.
Args:
idx (int): Global index of ``KFoldDataset``.
Returns:
dict: The idx-th annotation of the datasets.
"""
return self.dataset.get_data_info(idx)
@force_full_init
def __len__(self):
return len(self.dataset)
@force_full_init
def __getitem__(self, idx):
return self.dataset[idx]
@force_full_init
def get_cat_ids(self, idx):
return self.dataset.get_cat_ids(idx)
@force_full_init
def get_gt_labels(self):
return self.dataset.get_gt_labels()
@property
def CLASSES(self):
"""Return all categories names."""
return self._metainfo.get('classes', None)
@property
def class_to_idx(self):
"""Map mapping class name to class index.
Returns:
dict: mapping from class name to class index.
"""
return {cat: i for i, cat in enumerate(self.CLASSES)}
def __repr__(self):
"""Print the basic information of the dataset.
Returns:
str: Formatted string.
"""
head = 'Dataset ' + self.__class__.__name__
body = []
type_ = 'test' if self.test_mode else 'training'
body.append(f'Type: \t{type_}')
body.append(f'Seed: \t{self.seed}')
def ordinal(n):
# Copy from https://codegolf.stackexchange.com/a/74047
suffix = 'tsnrhtdd'[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4]
return f'{n}{suffix}'
body.append(
f'Fold: \t{ordinal(self.fold+1)} of {self.num_splits}-fold')
if self._fully_initialized:
body.append(f'Number of samples: \t{self.__len__()}')
else:
body.append("Haven't been initialized")
if self.CLASSES is not None:
body.append(f'Number of categories: \t{len(self.CLASSES)}')
else:
body.append('The `CLASSES` meta info is not set.')
body.append(
f'Original dataset type:\t{self.dataset.__class__.__name__}')
lines = [head] + [' ' * 4 + line for line in body]
return '\n'.join(lines)
|