Spaces:
Runtime error
Runtime error
File size: 8,712 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from mmcv.image import imread
from mmengine.config import Config
from mmengine.dataset import Compose, default_collate
from mmpretrain.registry import TRANSFORMS
from mmpretrain.structures import DataSample
from .base import BaseInferencer, InputType, ModelType
from .model import list_models
class ImageClassificationInferencer(BaseInferencer):
"""The inferencer for image classification.
Args:
model (BaseModel | str | Config): A model name or a path to the config
file, or a :obj:`BaseModel` object. The model name can be found
by ``ImageClassificationInferencer.list_models()`` and you can also
query it in :doc:`/modelzoo_statistics`.
pretrained (str, optional): Path to the checkpoint. If None, it will
try to find a pre-defined weight from the model you specified
(only work if the ``model`` is a model name). Defaults to None.
device (str, optional): Device to run inference. If None, the available
device will be automatically used. Defaults to None.
**kwargs: Other keyword arguments to initialize the model (only work if
the ``model`` is a model name).
Example:
1. Use a pre-trained model in MMPreTrain to inference an image.
>>> from mmpretrain import ImageClassificationInferencer
>>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k')
>>> inferencer('demo/demo.JPEG')
[{'pred_score': array([...]),
'pred_label': 65,
'pred_score': 0.6649367809295654,
'pred_class': 'sea snake'}]
2. Use a config file and checkpoint to inference multiple images on GPU,
and save the visualization results in a folder.
>>> from mmpretrain import ImageClassificationInferencer
>>> inferencer = ImageClassificationInferencer(
model='configs/resnet/resnet50_8xb32_in1k.py',
pretrained='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
device='cuda')
>>> inferencer(['demo/dog.jpg', 'demo/bird.JPEG'], show_dir="./visualize/")
""" # noqa: E501
visualize_kwargs: set = {
'resize', 'rescale_factor', 'draw_score', 'show', 'show_dir',
'wait_time'
}
def __init__(self,
model: ModelType,
pretrained: Union[bool, str] = True,
device: Union[str, torch.device, None] = None,
classes=None,
**kwargs) -> None:
super().__init__(
model=model, pretrained=pretrained, device=device, **kwargs)
if classes is not None:
self.classes = classes
else:
self.classes = getattr(self.model, '_dataset_meta',
{}).get('classes')
def __call__(self,
inputs: InputType,
return_datasamples: bool = False,
batch_size: int = 1,
**kwargs) -> dict:
"""Call the inferencer.
Args:
inputs (str | array | list): The image path or array, or a list of
images.
return_datasamples (bool): Whether to return results as
:obj:`DataSample`. Defaults to False.
batch_size (int): Batch size. Defaults to 1.
resize (int, optional): Resize the short edge of the image to the
specified length before visualization. Defaults to None.
rescale_factor (float, optional): Rescale the image by the rescale
factor for visualization. This is helpful when the image is too
large or too small for visualization. Defaults to None.
draw_score (bool): Whether to draw the prediction scores
of prediction categories. Defaults to True.
show (bool): Whether to display the visualization result in a
window. Defaults to False.
wait_time (float): The display time (s). Defaults to 0, which means
"forever".
show_dir (str, optional): If not None, save the visualization
results in the specified directory. Defaults to None.
Returns:
list: The inference results.
"""
return super().__call__(
inputs,
return_datasamples=return_datasamples,
batch_size=batch_size,
**kwargs)
def _init_pipeline(self, cfg: Config) -> Callable:
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
from mmpretrain.datasets import remove_transform
# Image loading is finished in `self.preprocess`.
test_pipeline_cfg = remove_transform(test_pipeline_cfg,
'LoadImageFromFile')
test_pipeline = Compose(
[TRANSFORMS.build(t) for t in test_pipeline_cfg])
return test_pipeline
def preprocess(self, inputs: List[InputType], batch_size: int = 1):
def load_image(input_):
img = imread(input_)
if img is None:
raise ValueError(f'Failed to read image {input_}.')
return dict(
img=img,
img_shape=img.shape[:2],
ori_shape=img.shape[:2],
)
pipeline = Compose([load_image, self.pipeline])
chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
yield from map(default_collate, chunked_data)
def visualize(self,
ori_inputs: List[InputType],
preds: List[DataSample],
show: bool = False,
wait_time: int = 0,
resize: Optional[int] = None,
rescale_factor: Optional[float] = None,
draw_score=True,
show_dir=None):
if not show and show_dir is None:
return None
if self.visualizer is None:
from mmpretrain.visualization import UniversalVisualizer
self.visualizer = UniversalVisualizer()
visualization = []
for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)):
image = imread(input_)
if isinstance(input_, str):
# The image loaded from path is BGR format.
image = image[..., ::-1]
name = Path(input_).stem
else:
name = str(i)
if show_dir is not None:
show_dir = Path(show_dir)
show_dir.mkdir(exist_ok=True)
out_file = str((show_dir / name).with_suffix('.png'))
else:
out_file = None
self.visualizer.visualize_cls(
image,
data_sample,
classes=self.classes,
resize=resize,
show=show,
wait_time=wait_time,
rescale_factor=rescale_factor,
draw_gt=False,
draw_pred=True,
draw_score=draw_score,
name=name,
out_file=out_file)
visualization.append(self.visualizer.get_image())
if show:
self.visualizer.close()
return visualization
def postprocess(self,
preds: List[DataSample],
visualization: List[np.ndarray],
return_datasamples=False) -> dict:
if return_datasamples:
return preds
results = []
for data_sample in preds:
pred_scores = data_sample.pred_score
pred_score = float(torch.max(pred_scores).item())
pred_label = torch.argmax(pred_scores).item()
result = {
'pred_scores': pred_scores.detach().cpu().numpy(),
'pred_label': pred_label,
'pred_score': pred_score,
}
if self.classes is not None:
result['pred_class'] = self.classes[pred_label]
results.append(result)
return results
@staticmethod
def list_models(pattern: Optional[str] = None):
"""List all available model names.
Args:
pattern (str | None): A wildcard pattern to match model names.
Returns:
List[str]: a list of model names.
"""
return list_models(pattern=pattern, task='Image Classification')
|