Spaces:
Runtime error
Runtime error
File size: 29,077 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple, Union
import cv2
import mmcv
import numpy as np
try:
import seaborn as sns
except ImportError:
sns = None
import torch
from mmengine.dist import master_only
from mmengine.structures import InstanceData, PixelData
from mmengine.visualization import Visualizer
from ..evaluation import INSTANCE_OFFSET
from ..registry import VISUALIZERS
from ..structures import DetDataSample
from ..structures.mask import BitmapMasks, PolygonMasks, bitmap_to_polygon
from .palette import _get_adaptive_scales, get_palette, jitter_color
@VISUALIZERS.register_module()
class DetLocalVisualizer(Visualizer):
"""MMDetection Local Visualizer.
Args:
name (str): Name of the instance. Defaults to 'visualizer'.
image (np.ndarray, optional): the origin image to draw. The format
should be RGB. Defaults to None.
vis_backends (list, optional): Visual backend config list.
Defaults to None.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
bbox_color (str, tuple(int), optional): Color of bbox lines.
The tuple of color should be in BGR order. Defaults to None.
text_color (str, tuple(int), optional): Color of texts.
The tuple of color should be in BGR order.
Defaults to (200, 200, 200).
mask_color (str, tuple(int), optional): Color of masks.
The tuple of color should be in BGR order.
Defaults to None.
line_width (int, float): The linewidth of lines.
Defaults to 3.
alpha (int, float): The transparency of bboxes or mask.
Defaults to 0.8.
Examples:
>>> import numpy as np
>>> import torch
>>> from mmengine.structures import InstanceData
>>> from mmdet.structures import DetDataSample
>>> from mmdet.visualization import DetLocalVisualizer
>>> det_local_visualizer = DetLocalVisualizer()
>>> image = np.random.randint(0, 256,
... size=(10, 12, 3)).astype('uint8')
>>> gt_instances = InstanceData()
>>> gt_instances.bboxes = torch.Tensor([[1, 2, 2, 5]])
>>> gt_instances.labels = torch.randint(0, 2, (1,))
>>> gt_det_data_sample = DetDataSample()
>>> gt_det_data_sample.gt_instances = gt_instances
>>> det_local_visualizer.add_datasample('image', image,
... gt_det_data_sample)
>>> det_local_visualizer.add_datasample(
... 'image', image, gt_det_data_sample,
... out_file='out_file.jpg')
>>> det_local_visualizer.add_datasample(
... 'image', image, gt_det_data_sample,
... show=True)
>>> pred_instances = InstanceData()
>>> pred_instances.bboxes = torch.Tensor([[2, 4, 4, 8]])
>>> pred_instances.labels = torch.randint(0, 2, (1,))
>>> pred_det_data_sample = DetDataSample()
>>> pred_det_data_sample.pred_instances = pred_instances
>>> det_local_visualizer.add_datasample('image', image,
... gt_det_data_sample,
... pred_det_data_sample)
"""
def __init__(self,
name: str = 'visualizer',
image: Optional[np.ndarray] = None,
vis_backends: Optional[Dict] = None,
save_dir: Optional[str] = None,
bbox_color: Optional[Union[str, Tuple[int]]] = None,
text_color: Optional[Union[str,
Tuple[int]]] = (200, 200, 200),
mask_color: Optional[Union[str, Tuple[int]]] = None,
line_width: Union[int, float] = 3,
alpha: float = 0.8) -> None:
super().__init__(
name=name,
image=image,
vis_backends=vis_backends,
save_dir=save_dir)
self.bbox_color = bbox_color
self.text_color = text_color
self.mask_color = mask_color
self.line_width = line_width
self.alpha = alpha
# Set default value. When calling
# `DetLocalVisualizer().dataset_meta=xxx`,
# it will override the default value.
self.dataset_meta = {}
def _draw_instances(self, image: np.ndarray, instances: ['InstanceData'],
classes: Optional[List[str]],
palette: Optional[List[tuple]]) -> np.ndarray:
"""Draw instances of GT or prediction.
Args:
image (np.ndarray): The image to draw.
instances (:obj:`InstanceData`): Data structure for
instance-level annotations or predictions.
classes (List[str], optional): Category information.
palette (List[tuple], optional): Palette information
corresponding to the category.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
self.set_image(image)
if 'bboxes' in instances and instances.bboxes.sum() > 0:
bboxes = instances.bboxes
labels = instances.labels
max_label = int(max(labels) if len(labels) > 0 else 0)
text_palette = get_palette(self.text_color, max_label + 1)
text_colors = [text_palette[label] for label in labels]
bbox_color = palette if self.bbox_color is None \
else self.bbox_color
bbox_palette = get_palette(bbox_color, max_label + 1)
colors = [bbox_palette[label] for label in labels]
self.draw_bboxes(
bboxes,
edge_colors=colors,
alpha=self.alpha,
line_widths=self.line_width)
positions = bboxes[:, :2] + self.line_width
areas = (bboxes[:, 3] - bboxes[:, 1]) * (
bboxes[:, 2] - bboxes[:, 0])
scales = _get_adaptive_scales(areas)
for i, (pos, label) in enumerate(zip(positions, labels)):
if 'label_names' in instances:
label_text = instances.label_names[i]
else:
label_text = classes[
label] if classes is not None else f'class {label}'
if 'scores' in instances:
score = round(float(instances.scores[i]) * 100, 1)
label_text += f': {score}'
self.draw_texts(
label_text,
pos,
colors=text_colors[i],
font_sizes=int(13 * scales[i]),
bboxes=[{
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
}])
if 'masks' in instances:
labels = instances.labels
masks = instances.masks
if isinstance(masks, torch.Tensor):
masks = masks.numpy()
elif isinstance(masks, (PolygonMasks, BitmapMasks)):
masks = masks.to_ndarray()
masks = masks.astype(bool)
max_label = int(max(labels) if len(labels) > 0 else 0)
mask_color = palette if self.mask_color is None \
else self.mask_color
mask_palette = get_palette(mask_color, max_label + 1)
colors = [jitter_color(mask_palette[label]) for label in labels]
text_palette = get_palette(self.text_color, max_label + 1)
text_colors = [text_palette[label] for label in labels]
polygons = []
for i, mask in enumerate(masks):
contours, _ = bitmap_to_polygon(mask)
polygons.extend(contours)
self.draw_polygons(polygons, edge_colors='w', alpha=self.alpha)
self.draw_binary_masks(masks, colors=colors, alphas=self.alpha)
if len(labels) > 0 and \
('bboxes' not in instances or
instances.bboxes.sum() == 0):
# instances.bboxes.sum()==0 represent dummy bboxes.
# A typical example of SOLO does not exist bbox branch.
areas = []
positions = []
for mask in masks:
_, _, stats, centroids = cv2.connectedComponentsWithStats(
mask.astype(np.uint8), connectivity=8)
if stats.shape[0] > 1:
largest_id = np.argmax(stats[1:, -1]) + 1
positions.append(centroids[largest_id])
areas.append(stats[largest_id, -1])
areas = np.stack(areas, axis=0)
scales = _get_adaptive_scales(areas)
for i, (pos, label) in enumerate(zip(positions, labels)):
if 'label_names' in instances:
label_text = instances.label_names[i]
else:
label_text = classes[
label] if classes is not None else f'class {label}'
if 'scores' in instances:
score = round(float(instances.scores[i]) * 100, 1)
label_text += f': {score}'
self.draw_texts(
label_text,
pos,
colors=text_colors[i],
font_sizes=int(13 * scales[i]),
horizontal_alignments='center',
bboxes=[{
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
}])
return self.get_image()
def _draw_panoptic_seg(self, image: np.ndarray,
panoptic_seg: ['PixelData'],
classes: Optional[List[str]],
palette: Optional[List]) -> np.ndarray:
"""Draw panoptic seg of GT or prediction.
Args:
image (np.ndarray): The image to draw.
panoptic_seg (:obj:`PixelData`): Data structure for
pixel-level annotations or predictions.
classes (List[str], optional): Category information.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
# TODO: Is there a way to bypass?
num_classes = len(classes)
panoptic_seg_data = panoptic_seg.sem_seg[0]
ids = np.unique(panoptic_seg_data)[::-1]
if 'label_names' in panoptic_seg:
# open set panoptic segmentation
classes = panoptic_seg.metainfo['label_names']
ignore_index = panoptic_seg.metainfo.get('ignore_index',
len(classes))
ids = ids[ids != ignore_index]
else:
# for VOID label
ids = ids[ids != num_classes]
labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
segms = (panoptic_seg_data[None] == ids[:, None, None])
max_label = int(max(labels) if len(labels) > 0 else 0)
mask_color = palette if self.mask_color is None \
else self.mask_color
mask_palette = get_palette(mask_color, max_label + 1)
colors = [mask_palette[label] for label in labels]
self.set_image(image)
# draw segm
polygons = []
for i, mask in enumerate(segms):
contours, _ = bitmap_to_polygon(mask)
polygons.extend(contours)
self.draw_polygons(polygons, edge_colors='w', alpha=self.alpha)
self.draw_binary_masks(segms, colors=colors, alphas=self.alpha)
# draw label
areas = []
positions = []
for mask in segms:
_, _, stats, centroids = cv2.connectedComponentsWithStats(
mask.astype(np.uint8), connectivity=8)
max_id = np.argmax(stats[1:, -1]) + 1
positions.append(centroids[max_id])
areas.append(stats[max_id, -1])
areas = np.stack(areas, axis=0)
scales = _get_adaptive_scales(areas)
text_palette = get_palette(self.text_color, max_label + 1)
text_colors = [text_palette[label] for label in labels]
for i, (pos, label) in enumerate(zip(positions, labels)):
label_text = classes[label]
self.draw_texts(
label_text,
pos,
colors=text_colors[i],
font_sizes=int(13 * scales[i]),
bboxes=[{
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
}],
horizontal_alignments='center')
return self.get_image()
def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData,
classes: Optional[List],
palette: Optional[List]) -> np.ndarray:
"""Draw semantic seg of GT or prediction.
Args:
image (np.ndarray): The image to draw.
sem_seg (:obj:`PixelData`): Data structure for pixel-level
annotations or predictions.
classes (list, optional): Input classes for result rendering, as
the prediction of segmentation model is a segment map with
label indices, `classes` is a list which includes items
responding to the label indices. If classes is not defined,
visualizer will take `cityscapes` classes by default.
Defaults to None.
palette (list, optional): Input palette for result rendering, which
is a list of color palette responding to the classes.
Defaults to None.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
sem_seg_data = sem_seg.sem_seg
if isinstance(sem_seg_data, torch.Tensor):
sem_seg_data = sem_seg_data.numpy()
# 0 ~ num_class, the value 0 means background
ids = np.unique(sem_seg_data)
ignore_index = sem_seg.metainfo.get('ignore_index', 255)
ids = ids[ids != ignore_index]
if 'label_names' in sem_seg:
# open set semseg
label_names = sem_seg.metainfo['label_names']
else:
label_names = classes
labels = np.array(ids, dtype=np.int64)
colors = [palette[label] for label in labels]
self.set_image(image)
# draw semantic masks
for i, (label, color) in enumerate(zip(labels, colors)):
masks = sem_seg_data == label
self.draw_binary_masks(masks, colors=[color], alphas=self.alpha)
label_text = label_names[label]
_, _, stats, centroids = cv2.connectedComponentsWithStats(
masks[0].astype(np.uint8), connectivity=8)
if stats.shape[0] > 1:
largest_id = np.argmax(stats[1:, -1]) + 1
centroids = centroids[largest_id]
areas = stats[largest_id, -1]
scales = _get_adaptive_scales(areas)
self.draw_texts(
label_text,
centroids,
colors=(255, 255, 255),
font_sizes=int(13 * scales),
horizontal_alignments='center',
bboxes=[{
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
}])
return self.get_image()
@master_only
def add_datasample(
self,
name: str,
image: np.ndarray,
data_sample: Optional['DetDataSample'] = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: float = 0,
# TODO: Supported in mmengine's Viusalizer.
out_file: Optional[str] = None,
pred_score_thr: float = 0.3,
step: int = 0) -> None:
"""Draw datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the
ground truth and the right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and
the images will be displayed in a local window.
- If ``out_file`` is specified, the drawn image will be
saved to ``out_file``. t is usually used when the display
is not available.
Args:
name (str): The image identifier.
image (np.ndarray): The image to draw.
data_sample (:obj:`DetDataSample`, optional): A data
sample that contain annotations and predictions.
Defaults to None.
draw_gt (bool): Whether to draw GT DetDataSample. Default to True.
draw_pred (bool): Whether to draw Prediction DetDataSample.
Defaults to True.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
out_file (str): Path to output file. Defaults to None.
pred_score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
step (int): Global step value to record. Defaults to 0.
"""
image = image.clip(0, 255).astype(np.uint8)
classes = self.dataset_meta.get('classes', None)
palette = self.dataset_meta.get('palette', None)
gt_img_data = None
pred_img_data = None
if data_sample is not None:
data_sample = data_sample.cpu()
if draw_gt and data_sample is not None:
gt_img_data = image
if 'gt_instances' in data_sample:
gt_img_data = self._draw_instances(image,
data_sample.gt_instances,
classes, palette)
if 'gt_sem_seg' in data_sample:
gt_img_data = self._draw_sem_seg(gt_img_data,
data_sample.gt_sem_seg,
classes, palette)
if 'gt_panoptic_seg' in data_sample:
assert classes is not None, 'class information is ' \
'not provided when ' \
'visualizing panoptic ' \
'segmentation results.'
gt_img_data = self._draw_panoptic_seg(
gt_img_data, data_sample.gt_panoptic_seg, classes, palette)
if draw_pred and data_sample is not None:
pred_img_data = image
if 'pred_instances' in data_sample:
pred_instances = data_sample.pred_instances
pred_instances = pred_instances[
pred_instances.scores > pred_score_thr]
pred_img_data = self._draw_instances(image, pred_instances,
classes, palette)
if 'pred_sem_seg' in data_sample:
pred_img_data = self._draw_sem_seg(pred_img_data,
data_sample.pred_sem_seg,
classes, palette)
if 'pred_panoptic_seg' in data_sample:
assert classes is not None, 'class information is ' \
'not provided when ' \
'visualizing panoptic ' \
'segmentation results.'
pred_img_data = self._draw_panoptic_seg(
pred_img_data, data_sample.pred_panoptic_seg.numpy(),
classes, palette)
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
elif gt_img_data is not None:
drawn_img = gt_img_data
elif pred_img_data is not None:
drawn_img = pred_img_data
else:
# Display the original image directly if nothing is drawn.
drawn_img = image
# It is convenient for users to obtain the drawn image.
# For example, the user wants to obtain the drawn image and
# save it as a video during video inference.
self.set_image(drawn_img)
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)
else:
self.add_image(name, drawn_img, step)
def random_color(seed):
"""Random a color according to the input seed."""
if sns is None:
raise RuntimeError('motmetrics is not installed,\
please install it by: pip install seaborn')
np.random.seed(seed)
colors = sns.color_palette()
color = colors[np.random.choice(range(len(colors)))]
color = tuple([int(255 * c) for c in color])
return color
@VISUALIZERS.register_module()
class TrackLocalVisualizer(Visualizer):
"""Tracking Local Visualizer for the MOT, VIS tasks.
Args:
name (str): Name of the instance. Defaults to 'visualizer'.
image (np.ndarray, optional): the origin image to draw. The format
should be RGB. Defaults to None.
vis_backends (list, optional): Visual backend config list.
Defaults to None.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
line_width (int, float): The linewidth of lines.
Defaults to 3.
alpha (int, float): The transparency of bboxes or mask.
Defaults to 0.8.
"""
def __init__(self,
name: str = 'visualizer',
image: Optional[np.ndarray] = None,
vis_backends: Optional[Dict] = None,
save_dir: Optional[str] = None,
line_width: Union[int, float] = 3,
alpha: float = 0.8) -> None:
super().__init__(name, image, vis_backends, save_dir)
self.line_width = line_width
self.alpha = alpha
# Set default value. When calling
# `TrackLocalVisualizer().dataset_meta=xxx`,
# it will override the default value.
self.dataset_meta = {}
def _draw_instances(self, image: np.ndarray,
instances: InstanceData) -> np.ndarray:
"""Draw instances of GT or prediction.
Args:
image (np.ndarray): The image to draw.
instances (:obj:`InstanceData`): Data structure for
instance-level annotations or predictions.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
self.set_image(image)
classes = self.dataset_meta.get('classes', None)
# get colors and texts
# for the MOT and VIS tasks
colors = [random_color(_id) for _id in instances.instances_id]
categories = [
classes[label] if classes is not None else f'cls{label}'
for label in instances.labels
]
if 'scores' in instances:
texts = [
f'{category_name}\n{instance_id} | {score:.2f}'
for category_name, instance_id, score in zip(
categories, instances.instances_id, instances.scores)
]
else:
texts = [
f'{category_name}\n{instance_id}' for category_name,
instance_id in zip(categories, instances.instances_id)
]
# draw bboxes and texts
if 'bboxes' in instances:
# draw bboxes
bboxes = instances.bboxes.clone()
self.draw_bboxes(
bboxes,
edge_colors=colors,
alpha=self.alpha,
line_widths=self.line_width)
# draw texts
if texts is not None:
positions = bboxes[:, :2] + self.line_width
areas = (bboxes[:, 3] - bboxes[:, 1]) * (
bboxes[:, 2] - bboxes[:, 0])
scales = _get_adaptive_scales(areas.cpu().numpy())
for i, pos in enumerate(positions):
self.draw_texts(
texts[i],
pos,
colors='black',
font_sizes=int(13 * scales[i]),
bboxes=[{
'facecolor': [c / 255 for c in colors[i]],
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
}])
# draw masks
if 'masks' in instances:
masks = instances.masks
polygons = []
for i, mask in enumerate(masks):
contours, _ = bitmap_to_polygon(mask)
polygons.extend(contours)
self.draw_polygons(polygons, edge_colors='w', alpha=self.alpha)
self.draw_binary_masks(masks, colors=colors, alphas=self.alpha)
return self.get_image()
@master_only
def add_datasample(
self,
name: str,
image: np.ndarray,
data_sample: DetDataSample = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: int = 0,
# TODO: Supported in mmengine's Viusalizer.
out_file: Optional[str] = None,
pred_score_thr: float = 0.3,
step: int = 0) -> None:
"""Draw datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the
ground truth and the right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and
the images will be displayed in a local window.
- If ``out_file`` is specified, the drawn image will be
saved to ``out_file``. t is usually used when the display
is not available.
Args:
name (str): The image identifier.
image (np.ndarray): The image to draw.
data_sample (OptTrackSampleList): A data
sample that contain annotations and predictions.
Defaults to None.
draw_gt (bool): Whether to draw GT TrackDataSample.
Default to True.
draw_pred (bool): Whether to draw Prediction TrackDataSample.
Defaults to True.
show (bool): Whether to display the drawn image. Default to False.
wait_time (int): The interval of show (s). Defaults to 0.
out_file (str): Path to output file. Defaults to None.
pred_score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
step (int): Global step value to record. Defaults to 0.
"""
gt_img_data = None
pred_img_data = None
if data_sample is not None:
data_sample = data_sample.cpu()
if draw_gt and data_sample is not None:
assert 'gt_instances' in data_sample
gt_img_data = self._draw_instances(image, data_sample.gt_instances)
if draw_pred and data_sample is not None:
assert 'pred_track_instances' in data_sample
pred_instances = data_sample.pred_track_instances
if 'scores' in pred_instances:
pred_instances = pred_instances[
pred_instances.scores > pred_score_thr].cpu()
pred_img_data = self._draw_instances(image, pred_instances)
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
elif gt_img_data is not None:
drawn_img = gt_img_data
else:
drawn_img = pred_img_data
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)
else:
self.add_image(name, drawn_img, step)
|