File size: 16,628 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from os.path import dirname, exists, join

import numpy as np
import torch
from mmengine.config import Config
from mmengine.dataset import pseudo_collate
from mmengine.structures import InstanceData, PixelData

from mmdet.utils.util_random import ensure_rng
from ..registry import TASK_UTILS
from ..structures import DetDataSample, TrackDataSample
from ..structures.bbox import HorizontalBoxes


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
        # Assume we are running in the source mmdetection repo
        repo_dpath = dirname(dirname(dirname(__file__)))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmdet
        repo_dpath = dirname(dirname(mmdet.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def get_detector_cfg(fname):
    """Grab configs necessary to create a detector.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    return model


def get_roi_head_cfg(fname):
    """Grab configs necessary to create a roi_head.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)

    roi_head = model.roi_head
    train_cfg = None if model.train_cfg is None else model.train_cfg.rcnn
    test_cfg = None if model.test_cfg is None else model.test_cfg.rcnn
    roi_head.update(dict(train_cfg=train_cfg, test_cfg=test_cfg))
    return roi_head


def _rand_bboxes(rng, num_boxes, w, h):
    cx, cy, bw, bh = rng.rand(num_boxes, 4).T

    tl_x = ((cx * w) - (w * bw / 2)).clip(0, w)
    tl_y = ((cy * h) - (h * bh / 2)).clip(0, h)
    br_x = ((cx * w) + (w * bw / 2)).clip(0, w)
    br_y = ((cy * h) + (h * bh / 2)).clip(0, h)

    bboxes = np.vstack([tl_x, tl_y, br_x, br_y]).T
    return bboxes


def _rand_masks(rng, num_boxes, bboxes, img_w, img_h):
    from mmdet.structures.mask import BitmapMasks
    masks = np.zeros((num_boxes, img_h, img_w))
    for i, bbox in enumerate(bboxes):
        bbox = bbox.astype(np.int32)
        mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) >
                0.3).astype(np.int64)
        masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask
    return BitmapMasks(masks, height=img_h, width=img_w)


def demo_mm_inputs(batch_size=2,
                   image_shapes=(3, 128, 128),
                   num_items=None,
                   num_classes=10,
                   sem_seg_output_strides=1,
                   with_mask=False,
                   with_semantic=False,
                   use_box_type=False,
                   device='cpu',
                   texts=None,
                   custom_entities=False):
    """Create a superset of inputs needed to run test or train batches.

    Args:
        batch_size (int): batch size. Defaults to 2.
        image_shapes (List[tuple], Optional): image shape.
            Defaults to (3, 128, 128)
        num_items (None | List[int]): specifies the number
            of boxes in each batch item. Default to None.
        num_classes (int): number of different labels a
            box might have. Defaults to 10.
        with_mask (bool): Whether to return mask annotation.
            Defaults to False.
        with_semantic (bool): whether to return semantic.
            Defaults to False.
        device (str): Destination device type. Defaults to cpu.
    """
    rng = np.random.RandomState(0)

    if isinstance(image_shapes, list):
        assert len(image_shapes) == batch_size
    else:
        image_shapes = [image_shapes] * batch_size

    if isinstance(num_items, list):
        assert len(num_items) == batch_size

    if texts is not None:
        assert batch_size == len(texts)

    packed_inputs = []
    for idx in range(batch_size):
        image_shape = image_shapes[idx]
        c, h, w = image_shape

        image = rng.randint(0, 255, size=image_shape, dtype=np.uint8)

        mm_inputs = dict()
        mm_inputs['inputs'] = torch.from_numpy(image).to(device)

        img_meta = {
            'img_id': idx,
            'img_shape': image_shape[1:],
            'ori_shape': image_shape[1:],
            'filename': '<demo>.png',
            'scale_factor': np.array([1.1, 1.2]),
            'flip': False,
            'flip_direction': None,
            'border': [1, 1, 1, 1]  # Only used by CenterNet
        }

        if texts:
            img_meta['text'] = texts[idx]
            img_meta['custom_entities'] = custom_entities

        data_sample = DetDataSample()
        data_sample.set_metainfo(img_meta)

        # gt_instances
        gt_instances = InstanceData()
        if num_items is None:
            num_boxes = rng.randint(1, 10)
        else:
            num_boxes = num_items[idx]

        bboxes = _rand_bboxes(rng, num_boxes, w, h)
        labels = rng.randint(1, num_classes, size=num_boxes)
        # TODO: remove this part when all model adapted with BaseBoxes
        if use_box_type:
            gt_instances.bboxes = HorizontalBoxes(bboxes, dtype=torch.float32)
        else:
            gt_instances.bboxes = torch.FloatTensor(bboxes)
        gt_instances.labels = torch.LongTensor(labels)

        if with_mask:
            masks = _rand_masks(rng, num_boxes, bboxes, w, h)
            gt_instances.masks = masks

        # TODO: waiting for ci to be fixed
        # masks = np.random.randint(0, 2, (len(bboxes), h, w), dtype=np.uint8)
        # gt_instances.mask = BitmapMasks(masks, h, w)

        data_sample.gt_instances = gt_instances

        # ignore_instances
        ignore_instances = InstanceData()
        bboxes = _rand_bboxes(rng, num_boxes, w, h)
        if use_box_type:
            ignore_instances.bboxes = HorizontalBoxes(
                bboxes, dtype=torch.float32)
        else:
            ignore_instances.bboxes = torch.FloatTensor(bboxes)
        data_sample.ignored_instances = ignore_instances

        # gt_sem_seg
        if with_semantic:
            # assume gt_semantic_seg using scale 1/8 of the img
            gt_semantic_seg = torch.from_numpy(
                np.random.randint(
                    0,
                    num_classes, (1, h // sem_seg_output_strides,
                                  w // sem_seg_output_strides),
                    dtype=np.uint8))
            gt_sem_seg_data = dict(sem_seg=gt_semantic_seg)
            data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)

        mm_inputs['data_samples'] = data_sample.to(device)

        # TODO: gt_ignore

        packed_inputs.append(mm_inputs)
    data = pseudo_collate(packed_inputs)
    return data


def demo_mm_proposals(image_shapes, num_proposals, device='cpu'):
    """Create a list of fake porposals.

    Args:
        image_shapes (list[tuple[int]]): Batch image shapes.
        num_proposals (int): The number of fake proposals.
    """
    rng = np.random.RandomState(0)

    results = []
    for img_shape in image_shapes:
        result = InstanceData()
        w, h = img_shape[1:]
        proposals = _rand_bboxes(rng, num_proposals, w, h)
        result.bboxes = torch.from_numpy(proposals).float()
        result.scores = torch.from_numpy(rng.rand(num_proposals)).float()
        result.labels = torch.zeros(num_proposals).long()
        results.append(result.to(device))
    return results


def demo_mm_sampling_results(proposals_list,
                             batch_gt_instances,
                             batch_gt_instances_ignore=None,
                             assigner_cfg=None,
                             sampler_cfg=None,
                             feats=None):
    """Create sample results that can be passed to BBoxHead.get_targets."""
    assert len(proposals_list) == len(batch_gt_instances)
    if batch_gt_instances_ignore is None:
        batch_gt_instances_ignore = [None for _ in batch_gt_instances]
    else:
        assert len(batch_gt_instances_ignore) == len(batch_gt_instances)

    default_assigner_cfg = dict(
        type='MaxIoUAssigner',
        pos_iou_thr=0.5,
        neg_iou_thr=0.5,
        min_pos_iou=0.5,
        ignore_iof_thr=-1)
    assigner_cfg = assigner_cfg if assigner_cfg is not None \
        else default_assigner_cfg
    default_sampler_cfg = dict(
        type='RandomSampler',
        num=512,
        pos_fraction=0.25,
        neg_pos_ub=-1,
        add_gt_as_proposals=True)
    sampler_cfg = sampler_cfg if sampler_cfg is not None \
        else default_sampler_cfg
    bbox_assigner = TASK_UTILS.build(assigner_cfg)
    bbox_sampler = TASK_UTILS.build(sampler_cfg)

    sampling_results = []
    for i in range(len(batch_gt_instances)):
        if feats is not None:
            feats = [lvl_feat[i][None] for lvl_feat in feats]
        # rename proposals.bboxes to proposals.priors
        proposals = proposals_list[i]
        proposals.priors = proposals.pop('bboxes')

        assign_result = bbox_assigner.assign(proposals, batch_gt_instances[i],
                                             batch_gt_instances_ignore[i])
        sampling_result = bbox_sampler.sample(
            assign_result, proposals, batch_gt_instances[i], feats=feats)
        sampling_results.append(sampling_result)

    return sampling_results


def demo_track_inputs(batch_size=1,
                      num_frames=2,
                      key_frames_inds=None,
                      image_shapes=(3, 128, 128),
                      num_items=None,
                      num_classes=1,
                      with_mask=False,
                      with_semantic=False):
    """Create a superset of inputs needed to run test or train batches.

    Args:
        batch_size (int): batch size. Default to 1.
        num_frames (int): The number of frames.
        key_frames_inds (List): The indices of key frames.
        image_shapes (List[tuple], Optional): image shape.
            Default to (3, 128, 128)
        num_items (None | List[int]): specifies the number
            of boxes in each batch item. Default to None.
        num_classes (int): number of different labels a
            box might have. Default to 1.
        with_mask (bool): Whether to return mask annotation.
            Defaults to False.
        with_semantic (bool): whether to return semantic.
            Default to False.
    """
    rng = np.random.RandomState(0)

    # Make sure the length of image_shapes is equal to ``batch_size``
    if isinstance(image_shapes, list):
        assert len(image_shapes) == batch_size
    else:
        image_shapes = [image_shapes] * batch_size

    packed_inputs = []
    for idx in range(batch_size):
        mm_inputs = dict(inputs=dict())
        _, h, w = image_shapes[idx]

        imgs = rng.randint(
            0, 255, size=(num_frames, *image_shapes[idx]), dtype=np.uint8)
        mm_inputs['inputs'] = torch.from_numpy(imgs)

        img_meta = {
            'img_id': idx,
            'img_shape': image_shapes[idx][-2:],
            'ori_shape': image_shapes[idx][-2:],
            'filename': '<demo>.png',
            'scale_factor': np.array([1.1, 1.2]),
            'flip': False,
            'flip_direction': None,
            'is_video_data': True,
        }

        video_data_samples = []
        for i in range(num_frames):
            data_sample = DetDataSample()
            img_meta['frame_id'] = i
            data_sample.set_metainfo(img_meta)

            # gt_instances
            gt_instances = InstanceData()
            if num_items is None:
                num_boxes = rng.randint(1, 10)
            else:
                num_boxes = num_items[idx]

            bboxes = _rand_bboxes(rng, num_boxes, w, h)
            labels = rng.randint(0, num_classes, size=num_boxes)
            instances_id = rng.randint(100, num_classes + 100, size=num_boxes)
            gt_instances.bboxes = torch.FloatTensor(bboxes)
            gt_instances.labels = torch.LongTensor(labels)
            gt_instances.instances_ids = torch.LongTensor(instances_id)

            if with_mask:
                masks = _rand_masks(rng, num_boxes, bboxes, w, h)
                gt_instances.masks = masks

            data_sample.gt_instances = gt_instances
            # ignore_instances
            ignore_instances = InstanceData()
            bboxes = _rand_bboxes(rng, num_boxes, w, h)
            ignore_instances.bboxes = bboxes
            data_sample.ignored_instances = ignore_instances

            video_data_samples.append(data_sample)

        track_data_sample = TrackDataSample()
        track_data_sample.video_data_samples = video_data_samples
        if key_frames_inds is not None:
            assert isinstance(
                key_frames_inds,
                list) and len(key_frames_inds) < num_frames and max(
                    key_frames_inds) < num_frames
            ref_frames_inds = [
                i for i in range(num_frames) if i not in key_frames_inds
            ]
            track_data_sample.set_metainfo(
                dict(key_frames_inds=key_frames_inds))
            track_data_sample.set_metainfo(
                dict(ref_frames_inds=ref_frames_inds))
        mm_inputs['data_samples'] = track_data_sample

        # TODO: gt_ignore
        packed_inputs.append(mm_inputs)
    data = pseudo_collate(packed_inputs)
    return data


def random_boxes(num=1, scale=1, rng=None):
    """Simple version of ``kwimage.Boxes.random``
    Returns:
        Tensor: shape (n, 4) in x1, y1, x2, y2 format.
    References:
        https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390 # noqa: E501
    Example:
        >>> num = 3
        >>> scale = 512
        >>> rng = 0
        >>> boxes = random_boxes(num, scale, rng)
        >>> print(boxes)
        tensor([[280.9925, 278.9802, 308.6148, 366.1769],
                [216.9113, 330.6978, 224.0446, 456.5878],
                [405.3632, 196.3221, 493.3953, 270.7942]])
    """
    rng = ensure_rng(rng)

    tlbr = rng.rand(num, 4).astype(np.float32)

    tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
    tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
    br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
    br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])

    tlbr[:, 0] = tl_x * scale
    tlbr[:, 1] = tl_y * scale
    tlbr[:, 2] = br_x * scale
    tlbr[:, 3] = br_y * scale

    boxes = torch.from_numpy(tlbr)
    return boxes


# TODO: Support full ceph
def replace_to_ceph(cfg):
    backend_args = dict(
        backend='petrel',
        path_mapping=dict({
            './data/': 's3://openmmlab/datasets/detection/',
            'data/': 's3://openmmlab/datasets/detection/'
        }))

    # TODO: name is a reserved interface, which will be used later.
    def _process_pipeline(dataset, name):

        def replace_img(pipeline):
            if pipeline['type'] == 'LoadImageFromFile':
                pipeline['backend_args'] = backend_args

        def replace_ann(pipeline):
            if pipeline['type'] == 'LoadAnnotations' or pipeline[
                    'type'] == 'LoadPanopticAnnotations':
                pipeline['backend_args'] = backend_args

        if 'pipeline' in dataset:
            replace_img(dataset.pipeline[0])
            replace_ann(dataset.pipeline[1])
            if 'dataset' in dataset:
                # dataset wrapper
                replace_img(dataset.dataset.pipeline[0])
                replace_ann(dataset.dataset.pipeline[1])
        else:
            # dataset wrapper
            replace_img(dataset.dataset.pipeline[0])
            replace_ann(dataset.dataset.pipeline[1])

    def _process_evaluator(evaluator, name):
        if evaluator['type'] == 'CocoPanopticMetric':
            evaluator['backend_args'] = backend_args

    # half ceph
    _process_pipeline(cfg.train_dataloader.dataset, cfg.filename)
    _process_pipeline(cfg.val_dataloader.dataset, cfg.filename)
    _process_pipeline(cfg.test_dataloader.dataset, cfg.filename)
    _process_evaluator(cfg.val_evaluator, cfg.filename)
    _process_evaluator(cfg.test_evaluator, cfg.filename)