File size: 6,020 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) OpenMMLab. All rights reserved.
import json
from typing import List

import torch.nn as nn
from mmengine.dist import get_dist_info
from mmengine.logging import MMLogger
from mmengine.optim import DefaultOptimWrapperConstructor

from mmdet.registry import OPTIM_WRAPPER_CONSTRUCTORS


def get_layer_id_for_convnext(var_name, max_layer_id):
    """Get the layer id to set the different learning rates in ``layer_wise``
    decay_type.

    Args:
        var_name (str): The key of the model.
        max_layer_id (int): Maximum layer id.

    Returns:
        int: The id number corresponding to different learning rate in
        ``LearningRateDecayOptimizerConstructor``.
    """

    if var_name in ('backbone.cls_token', 'backbone.mask_token',
                    'backbone.pos_embed'):
        return 0
    elif var_name.startswith('backbone.downsample_layers'):
        stage_id = int(var_name.split('.')[2])
        if stage_id == 0:
            layer_id = 0
        elif stage_id == 1:
            layer_id = 2
        elif stage_id == 2:
            layer_id = 3
        elif stage_id == 3:
            layer_id = max_layer_id
        return layer_id
    elif var_name.startswith('backbone.stages'):
        stage_id = int(var_name.split('.')[2])
        block_id = int(var_name.split('.')[3])
        if stage_id == 0:
            layer_id = 1
        elif stage_id == 1:
            layer_id = 2
        elif stage_id == 2:
            layer_id = 3 + block_id // 3
        elif stage_id == 3:
            layer_id = max_layer_id
        return layer_id
    else:
        return max_layer_id + 1


def get_stage_id_for_convnext(var_name, max_stage_id):
    """Get the stage id to set the different learning rates in ``stage_wise``
    decay_type.

    Args:
        var_name (str): The key of the model.
        max_stage_id (int): Maximum stage id.

    Returns:
        int: The id number corresponding to different learning rate in
        ``LearningRateDecayOptimizerConstructor``.
    """

    if var_name in ('backbone.cls_token', 'backbone.mask_token',
                    'backbone.pos_embed'):
        return 0
    elif var_name.startswith('backbone.downsample_layers'):
        return 0
    elif var_name.startswith('backbone.stages'):
        stage_id = int(var_name.split('.')[2])
        return stage_id + 1
    else:
        return max_stage_id - 1


@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class LearningRateDecayOptimizerConstructor(DefaultOptimWrapperConstructor):
    # Different learning rates are set for different layers of backbone.
    # Note: Currently, this optimizer constructor is built for ConvNeXt.

    def add_params(self, params: List[dict], module: nn.Module,
                   **kwargs) -> None:
        """Add all parameters of module to the params list.

        The parameters of the given module will be added to the list of param
        groups, with specific rules defined by paramwise_cfg.

        Args:
            params (list[dict]): A list of param groups, it will be modified
                in place.
            module (nn.Module): The module to be added.
        """
        logger = MMLogger.get_current_instance()

        parameter_groups = {}
        logger.info(f'self.paramwise_cfg is {self.paramwise_cfg}')
        num_layers = self.paramwise_cfg.get('num_layers') + 2
        decay_rate = self.paramwise_cfg.get('decay_rate')
        decay_type = self.paramwise_cfg.get('decay_type', 'layer_wise')
        logger.info('Build LearningRateDecayOptimizerConstructor  '
                    f'{decay_type} {decay_rate} - {num_layers}')
        weight_decay = self.base_wd
        for name, param in module.named_parameters():
            if not param.requires_grad:
                continue  # frozen weights
            if len(param.shape) == 1 or name.endswith('.bias') or name in (
                    'pos_embed', 'cls_token'):
                group_name = 'no_decay'
                this_weight_decay = 0.
            else:
                group_name = 'decay'
                this_weight_decay = weight_decay
            if 'layer_wise' in decay_type:
                if 'ConvNeXt' in module.backbone.__class__.__name__:
                    layer_id = get_layer_id_for_convnext(
                        name, self.paramwise_cfg.get('num_layers'))
                    logger.info(f'set param {name} as id {layer_id}')
                else:
                    raise NotImplementedError()
            elif decay_type == 'stage_wise':
                if 'ConvNeXt' in module.backbone.__class__.__name__:
                    layer_id = get_stage_id_for_convnext(name, num_layers)
                    logger.info(f'set param {name} as id {layer_id}')
                else:
                    raise NotImplementedError()
            group_name = f'layer_{layer_id}_{group_name}'

            if group_name not in parameter_groups:
                scale = decay_rate**(num_layers - layer_id - 1)

                parameter_groups[group_name] = {
                    'weight_decay': this_weight_decay,
                    'params': [],
                    'param_names': [],
                    'lr_scale': scale,
                    'group_name': group_name,
                    'lr': scale * self.base_lr,
                }

            parameter_groups[group_name]['params'].append(param)
            parameter_groups[group_name]['param_names'].append(name)
        rank, _ = get_dist_info()
        if rank == 0:
            to_display = {}
            for key in parameter_groups:
                to_display[key] = {
                    'param_names': parameter_groups[key]['param_names'],
                    'lr_scale': parameter_groups[key]['lr_scale'],
                    'lr': parameter_groups[key]['lr'],
                    'weight_decay': parameter_groups[key]['weight_decay'],
                }
            logger.info(f'Param groups = {json.dumps(to_display, indent=2)}')
        params.extend(parameter_groups.values())