File size: 1,406 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch
from mmengine.hooks import Hook
from mmengine.runner import Runner

from mmdet.registry import HOOKS


@HOOKS.register_module()
class CheckInvalidLossHook(Hook):
    """Check invalid loss hook.

    This hook will regularly check whether the loss is valid
    during training.

    Args:
        interval (int): Checking interval (every k iterations).
            Default: 50.
    """

    def __init__(self, interval: int = 50) -> None:
        self.interval = interval

    def after_train_iter(self,
                         runner: Runner,
                         batch_idx: int,
                         data_batch: Optional[dict] = None,
                         outputs: Optional[dict] = None) -> None:
        """Regularly check whether the loss is valid every n iterations.

        Args:
            runner (:obj:`Runner`): The runner of the training process.
            batch_idx (int): The index of the current batch in the train loop.
            data_batch (dict, Optional): Data from dataloader.
                Defaults to None.
            outputs (dict, Optional): Outputs from model. Defaults to None.
        """
        if self.every_n_train_iters(runner, self.interval):
            assert torch.isfinite(outputs['loss']), \
                runner.logger.info('loss become infinite or NaN!')