Spaces:
Runtime error
Runtime error
File size: 4,715 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Callable, List, Optional, Union
import torch
from mmcv.image import imread
from mmengine.config import Config
from mmengine.dataset import Compose, default_collate
from mmpretrain.registry import TRANSFORMS
from .base import BaseInferencer, InputType
from .model import list_models
class FeatureExtractor(BaseInferencer):
"""The inferencer for extract features.
Args:
model (BaseModel | str | Config): A model name or a path to the config
file, or a :obj:`BaseModel` object. The model name can be found
by ``FeatureExtractor.list_models()`` and you can also query it in
:doc:`/modelzoo_statistics`.
pretrained (str, optional): Path to the checkpoint. If None, it will
try to find a pre-defined weight from the model you specified
(only work if the ``model`` is a model name). Defaults to None.
device (str, optional): Device to run inference. If None, the available
device will be automatically used. Defaults to None.
**kwargs: Other keyword arguments to initialize the model (only work if
the ``model`` is a model name).
Example:
>>> from mmpretrain import FeatureExtractor
>>> inferencer = FeatureExtractor('resnet50_8xb32_in1k', backbone=dict(out_indices=(0, 1, 2, 3)))
>>> feats = inferencer('demo/demo.JPEG', stage='backbone')[0]
>>> for feat in feats:
>>> print(feat.shape)
torch.Size([256, 56, 56])
torch.Size([512, 28, 28])
torch.Size([1024, 14, 14])
torch.Size([2048, 7, 7])
""" # noqa: E501
def __call__(self,
inputs: InputType,
batch_size: int = 1,
**kwargs) -> dict:
"""Call the inferencer.
Args:
inputs (str | array | list): The image path or array, or a list of
images.
batch_size (int): Batch size. Defaults to 1.
**kwargs: Other keyword arguments accepted by the `extract_feat`
method of the model.
Returns:
tensor | Tuple[tensor]: The extracted features.
"""
ori_inputs = self._inputs_to_list(inputs)
inputs = self.preprocess(ori_inputs, batch_size=batch_size)
preds = []
for data in inputs:
preds.extend(self.forward(data, **kwargs))
return preds
@torch.no_grad()
def forward(self, inputs: Union[dict, tuple], **kwargs):
inputs = self.model.data_preprocessor(inputs, False)['inputs']
outputs = self.model.extract_feat(inputs, **kwargs)
def scatter(feats, index):
if isinstance(feats, torch.Tensor):
return feats[index]
else:
# Sequence of tensor
return type(feats)([scatter(item, index) for item in feats])
results = []
for i in range(inputs.shape[0]):
results.append(scatter(outputs, i))
return results
def _init_pipeline(self, cfg: Config) -> Callable:
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
from mmpretrain.datasets import remove_transform
# Image loading is finished in `self.preprocess`.
test_pipeline_cfg = remove_transform(test_pipeline_cfg,
'LoadImageFromFile')
test_pipeline = Compose(
[TRANSFORMS.build(t) for t in test_pipeline_cfg])
return test_pipeline
def preprocess(self, inputs: List[InputType], batch_size: int = 1):
def load_image(input_):
img = imread(input_)
if img is None:
raise ValueError(f'Failed to read image {input_}.')
return dict(
img=img,
img_shape=img.shape[:2],
ori_shape=img.shape[:2],
)
pipeline = Compose([load_image, self.pipeline])
chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
yield from map(default_collate, chunked_data)
def visualize(self):
raise NotImplementedError(
"The FeatureExtractor doesn't support visualization.")
def postprocess(self):
raise NotImplementedError(
"The FeatureExtractor doesn't need postprocessing.")
@staticmethod
def list_models(pattern: Optional[str] = None):
"""List all available model names.
Args:
pattern (str | None): A wildcard pattern to match model names.
Returns:
List[str]: a list of model names.
"""
return list_models(pattern=pattern)
|