File size: 14,927 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# Copyright (c) OpenMMLab. All rights reserved.
from abc import abstractmethod
from math import ceil
from typing import Callable, Iterable, List, Optional, Tuple, Union

import numpy as np
import torch
from mmengine.config import Config
from mmengine.dataset import default_collate
from mmengine.fileio import get_file_backend
from mmengine.model import BaseModel
from mmengine.runner import load_checkpoint

from mmpretrain.structures import DataSample
from mmpretrain.utils import track
from .model import get_model, list_models

ModelType = Union[BaseModel, str, Config]
InputType = Union[str, np.ndarray, list]


class BaseInferencer:
    """Base inferencer for various tasks.

    The BaseInferencer provides the standard workflow for inference as follows:

    1. Preprocess the input data by :meth:`preprocess`.
    2. Forward the data to the model by :meth:`forward`. ``BaseInferencer``
       assumes the model inherits from :class:`mmengine.models.BaseModel` and
       will call `model.test_step` in :meth:`forward` by default.
    3. Visualize the results by :meth:`visualize`.
    4. Postprocess and return the results by :meth:`postprocess`.

    When we call the subclasses inherited from BaseInferencer (not overriding
    ``__call__``), the workflow will be executed in order.

    All subclasses of BaseInferencer could define the following class
    attributes for customization:

    - ``preprocess_kwargs``: The keys of the kwargs that will be passed to
      :meth:`preprocess`.
    - ``forward_kwargs``: The keys of the kwargs that will be passed to
      :meth:`forward`
    - ``visualize_kwargs``: The keys of the kwargs that will be passed to
      :meth:`visualize`
    - ``postprocess_kwargs``: The keys of the kwargs that will be passed to
      :meth:`postprocess`

    All attributes mentioned above should be a ``set`` of keys (strings),
    and each key should not be duplicated. Actually, :meth:`__call__` will
    dispatch all the arguments to the corresponding methods according to the
    ``xxx_kwargs`` mentioned above.

    Subclasses inherited from ``BaseInferencer`` should implement
    :meth:`_init_pipeline`, :meth:`visualize` and :meth:`postprocess`:

    - _init_pipeline: Return a callable object to preprocess the input data.
    - visualize: Visualize the results returned by :meth:`forward`.
    - postprocess: Postprocess the results returned by :meth:`forward` and
      :meth:`visualize`.

    Args:
        model (BaseModel | str | Config): A model name or a path to the config
            file, or a :obj:`BaseModel` object. The model name can be found
            by ``cls.list_models()`` and you can also query it in
            :doc:`/modelzoo_statistics`.
        pretrained (str, optional): Path to the checkpoint. If None, it will
            try to find a pre-defined weight from the model you specified
            (only work if the ``model`` is a model name). Defaults to None.
        device (str | torch.device | None): Transfer the model to the target
            device. Defaults to None.
        device_map (str | dict | None): A map that specifies where each
            submodule should go. It doesn't need to be refined to each
            parameter/buffer name, once a given module name is inside, every
            submodule of it will be sent to the same device. You can use
            `device_map="auto"` to automatically generate the device map.
            Defaults to None.
        offload_folder (str | None): If the `device_map` contains any value
            `"disk"`, the folder where we will offload weights.
        **kwargs: Other keyword arguments to initialize the model (only work if
            the ``model`` is a model name).
    """

    preprocess_kwargs: set = set()
    forward_kwargs: set = set()
    visualize_kwargs: set = set()
    postprocess_kwargs: set = set()

    def __init__(self,
                 model: ModelType,
                 pretrained: Union[bool, str] = True,
                 device: Union[str, torch.device, None] = None,
                 device_map=None,
                 offload_folder=None,
                 **kwargs) -> None:

        if isinstance(model, BaseModel):
            if isinstance(pretrained, str):
                load_checkpoint(model, pretrained, map_location='cpu')
            if device_map is not None:
                from .utils import dispatch_model
                model = dispatch_model(
                    model,
                    device_map=device_map,
                    offload_folder=offload_folder)
            elif device is not None:
                model.to(device)
        else:
            model = get_model(
                model,
                pretrained,
                device=device,
                device_map=device_map,
                offload_folder=offload_folder,
                **kwargs)

        model.eval()

        self.config = model._config
        self.model = model
        self.pipeline = self._init_pipeline(self.config)
        self.visualizer = None

    def __call__(
        self,
        inputs,
        return_datasamples: bool = False,
        batch_size: int = 1,
        **kwargs,
    ) -> dict:
        """Call the inferencer.

        Args:
            inputs (InputsType): Inputs for the inferencer.
            return_datasamples (bool): Whether to return results as
                :obj:`BaseDataElement`. Defaults to False.
            batch_size (int): Batch size. Defaults to 1.
            **kwargs: Key words arguments passed to :meth:`preprocess`,
                :meth:`forward`, :meth:`visualize` and :meth:`postprocess`.
                Each key in kwargs should be in the corresponding set of
                ``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs``
                and ``postprocess_kwargs``.

        Returns:
            dict: Inference and visualization results.
        """
        (
            preprocess_kwargs,
            forward_kwargs,
            visualize_kwargs,
            postprocess_kwargs,
        ) = self._dispatch_kwargs(**kwargs)

        ori_inputs = self._inputs_to_list(inputs)
        inputs = self.preprocess(
            ori_inputs, batch_size=batch_size, **preprocess_kwargs)
        preds = []
        for data in track(
                inputs, 'Inference', total=ceil(len(ori_inputs) / batch_size)):
            preds.extend(self.forward(data, **forward_kwargs))
        visualization = self.visualize(ori_inputs, preds, **visualize_kwargs)
        results = self.postprocess(preds, visualization, return_datasamples,
                                   **postprocess_kwargs)
        return results

    def _inputs_to_list(self, inputs: InputType) -> list:
        """Preprocess the inputs to a list.

        Cast the input data to a list of data.

        - list or tuple: return inputs
        - str:
            - Directory path: return all files in the directory
            - other cases: return a list containing the string. The string
              could be a path to file, a url or other types of string according
              to the task.
        - other: return a list with one item.

        Args:
            inputs (str | array | list): Inputs for the inferencer.

        Returns:
            list: List of input for the :meth:`preprocess`.
        """
        if isinstance(inputs, str):
            backend = get_file_backend(inputs)
            if hasattr(backend, 'isdir') and backend.isdir(inputs):
                # Backends like HttpsBackend do not implement `isdir`, so only
                # those backends that implement `isdir` could accept the inputs
                # as a directory
                file_list = backend.list_dir_or_file(inputs, list_dir=False)
                inputs = [
                    backend.join_path(inputs, file) for file in file_list
                ]

        if not isinstance(inputs, (list, tuple)):
            inputs = [inputs]

        return list(inputs)

    def preprocess(self, inputs: InputType, batch_size: int = 1, **kwargs):
        """Process the inputs into a model-feedable format.

        Customize your preprocess by overriding this method. Preprocess should
        return an iterable object, of which each item will be used as the
        input of ``model.test_step``.

        ``BaseInferencer.preprocess`` will return an iterable chunked data,
        which will be used in __call__ like this:

        .. code-block:: python

            def __call__(self, inputs, batch_size=1, **kwargs):
                chunked_data = self.preprocess(inputs, batch_size, **kwargs)
                for batch in chunked_data:
                    preds = self.forward(batch, **kwargs)

        Args:
            inputs (InputsType): Inputs given by user.
            batch_size (int): batch size. Defaults to 1.

        Yields:
            Any: Data processed by the ``pipeline`` and ``default_collate``.
        """
        chunked_data = self._get_chunk_data(
            map(self.pipeline, inputs), batch_size)
        yield from map(default_collate, chunked_data)

    @torch.no_grad()
    def forward(self, inputs: Union[dict, tuple], **kwargs):
        """Feed the inputs to the model."""
        return self.model.test_step(inputs)

    def visualize(self,
                  inputs: list,
                  preds: List[DataSample],
                  show: bool = False,
                  **kwargs) -> List[np.ndarray]:
        """Visualize predictions.

        Customize your visualization by overriding this method. visualize
        should return visualization results, which could be np.ndarray or any
        other objects.

        Args:
            inputs (list): Inputs preprocessed by :meth:`_inputs_to_list`.
            preds (Any): Predictions of the model.
            show (bool): Whether to display the image in a popup window.
                Defaults to False.

        Returns:
            List[np.ndarray]: Visualization results.
        """
        if show:
            raise NotImplementedError(
                f'The `visualize` method of {self.__class__.__name__} '
                'is not implemented.')

    @abstractmethod
    def postprocess(
        self,
        preds: List[DataSample],
        visualization: List[np.ndarray],
        return_datasample=False,
        **kwargs,
    ) -> dict:
        """Process the predictions and visualization results from ``forward``
        and ``visualize``.

        This method should be responsible for the following tasks:

        1. Convert datasamples into a json-serializable dict if needed.
        2. Pack the predictions and visualization results and return them.
        3. Dump or log the predictions.

        Customize your postprocess by overriding this method. Make sure
        ``postprocess`` will return a dict with visualization results and
        inference results.

        Args:
            preds (List[Dict]): Predictions of the model.
            visualization (np.ndarray): Visualized predictions.
            return_datasample (bool): Whether to return results as datasamples.
                Defaults to False.

        Returns:
            dict: Inference and visualization results with key ``predictions``
            and ``visualization``

            - ``visualization (Any)``: Returned by :meth:`visualize`
            - ``predictions`` (dict or DataSample): Returned by
              :meth:`forward` and processed in :meth:`postprocess`.
              If ``return_datasample=False``, it usually should be a
              json-serializable dict containing only basic data elements such
              as strings and numbers.
        """

    @abstractmethod
    def _init_pipeline(self, cfg: Config) -> Callable:
        """Initialize the test pipeline.

        Return a pipeline to handle various input data, such as ``str``,
        ``np.ndarray``. It is an abstract method in BaseInferencer, and should
        be implemented in subclasses.

        The returned pipeline will be used to process a single data.
        It will be used in :meth:`preprocess` like this:

        .. code-block:: python
            def preprocess(self, inputs, batch_size, **kwargs):
                ...
                dataset = map(self.pipeline, dataset)
                ...
        """

    def _get_chunk_data(self, inputs: Iterable, chunk_size: int):
        """Get batch data from dataset.

        Args:
            inputs (Iterable): An iterable dataset.
            chunk_size (int): Equivalent to batch size.

        Yields:
            list: batch data.
        """
        inputs_iter = iter(inputs)
        while True:
            try:
                chunk_data = []
                for _ in range(chunk_size):
                    processed_data = next(inputs_iter)
                    chunk_data.append(processed_data)
                yield chunk_data
            except StopIteration:
                if chunk_data:
                    yield chunk_data
                break

    def _dispatch_kwargs(self, **kwargs) -> Tuple[dict, dict, dict, dict]:
        """Dispatch kwargs to preprocess(), forward(), visualize() and
        postprocess() according to the actual demands.

        Returns:
            Tuple[Dict, Dict, Dict, Dict]: kwargs passed to preprocess,
            forward, visualize and postprocess respectively.
        """
        # Ensure each argument only matches one function
        method_kwargs = self.preprocess_kwargs | self.forward_kwargs | \
            self.visualize_kwargs | self.postprocess_kwargs

        union_kwargs = method_kwargs | set(kwargs.keys())
        if union_kwargs != method_kwargs:
            unknown_kwargs = union_kwargs - method_kwargs
            raise ValueError(
                f'unknown argument {unknown_kwargs} for `preprocess`, '
                '`forward`, `visualize` and `postprocess`')

        preprocess_kwargs = {}
        forward_kwargs = {}
        visualize_kwargs = {}
        postprocess_kwargs = {}

        for key, value in kwargs.items():
            if key in self.preprocess_kwargs:
                preprocess_kwargs[key] = value
            if key in self.forward_kwargs:
                forward_kwargs[key] = value
            if key in self.visualize_kwargs:
                visualize_kwargs[key] = value
            if key in self.postprocess_kwargs:
                postprocess_kwargs[key] = value

        return (
            preprocess_kwargs,
            forward_kwargs,
            visualize_kwargs,
            postprocess_kwargs,
        )

    @staticmethod
    def list_models(pattern: Optional[str] = None):
        """List models defined in metafile of corresponding packages.

        Args:
            pattern (str | None): A wildcard pattern to match model names.

        Returns:
            List[str]: a list of model names.
        """
        return list_models(pattern=pattern)