import gradio as gr import os from PIL import Image import pytesseract from pdf2image import convert_from_path from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain.memory import ConversationBufferMemory from langchain_groq import ChatGroq from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter def setup_environment(): os.environ["GROQ_API_KEY"] = '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' # Define OCR functions for image and PDF files def ocr_image(image_path, language='eng+guj'): img = Image.open(image_path) text = pytesseract.image_to_string(img, lang=language) return text def ocr_pdf(pdf_path, language='eng+guj'): images = convert_from_path(pdf_path) all_text = "" for img in images: text = pytesseract.image_to_string(img, lang=language) all_text += text + "\n" return all_text def ocr_file(file_path): file_extension = os.path.splitext(file_path)[1].lower() if file_extension == ".pdf": text_re = ocr_pdf(file_path, language='guj+eng') elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]: text_re = ocr_image(file_path, language='guj+eng') else: raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.") return text_re def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) os.makedirs("faiss_index", exist_ok=True) vector_store.save_local("faiss_index") return vector_store def process_ocr_and_pdf_files(file_paths): raw_text = "" for file_path in file_paths: raw_text += ocr_file(file_path) + "\n" text_chunks = get_text_chunks(raw_text) return get_vector_store(text_chunks) def get_conversational_chain(): template = """You are an intelligent educational assistant specialized in handling queries about documents. You have been provided with OCR-processed text from the uploaded files that contains important educational information. Core Responsibilities: 1. Language Processing: - Identify the language of the user's query (English or Gujarati) - Respond in the same language as the query - If the query is in Gujarati, ensure the response maintains proper Gujarati grammar and terminology - For technical terms, provide both English and Gujarati versions when relevant 2. Document Understanding: - Analyze the OCR-processed text from the uploaded files - Account for potential OCR errors or misinterpretations - Focus on extracting accurate information despite possible OCR imperfections 3. Response Guidelines: - Provide direct, clear answers based solely on the document content - If information is unclear due to OCR quality, mention this limitation - For numerical data (dates, percentages, marks), double-check accuracy before responding - If information is not found in the documents, clearly state: \"This information is not present in the uploaded documents\" 4. Educational Context: - Maintain focus on educational queries related to the document content - For admission-related queries, emphasize important deadlines and requirements - For scholarship information, highlight eligibility criteria and application processes - For course-related queries, provide detailed, accurate information from the documents 5. Response Format: - Structure responses clearly with relevant subpoints when necessary - For complex information, break down the answer into digestible parts - Include relevant reference points from the documents when applicable - Format numerical data and dates clearly 6. Quality Control: - Verify that responses align with the document content - Don't make assumptions beyond the provided information - If multiple interpretations are possible due to OCR quality, mention all possibilities - Maintain consistency in terminology throughout the conversation Important Rules: - Never make up information not present in the documents - Don't combine information from previous conversations or external knowledge - Always indicate if certain parts of the documents are unclear due to OCR quality - Maintain professional tone while being accessible to students and parents - If the query is out of scope of the uploaded documents, politely redirect to relevant official sources Context from uploaded documents: {context} Chat History: {history} Current Question: {question} Assistant: Let me provide a clear and accurate response based on the uploaded documents...""" embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) new_vector_store = FAISS.load_local( "faiss_index", embeddings, allow_dangerous_deserialization=True ) QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template) qa_chain = RetrievalQA.from_chain_type(llm, retriever=new_vector_store.as_retriever(), chain_type='stuff', verbose=True, chain_type_kwargs={"verbose": True,"prompt": QA_CHAIN_PROMPT,"memory": ConversationBufferMemory(memory_key="history",input_key="question"),}) return qa_chain def user_input(user_question): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() response = chain({"input_documents": docs, "query": user_question}, return_only_outputs=True) return response.get("result", "No result found") def gradio_interface(): def process_files(files): file_paths = [] for file in files: file_path = os.path.join("temp", file.name) os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, "wb") as f: f.write(file.read()) file_paths.append(file_path) process_ocr_and_pdf_files(file_paths) return "Files processed and vector store updated!" def ask_question(user_question): return user_input(user_question) file_upload = gr.inputs.File(label="Upload Files", type="file", multiple=True) text_input = gr.inputs.Textbox(label="Ask a question related to the uploaded documents:") outputs = [gr.outputs.Textbox(label="Output"), gr.outputs.Textbox(label="Conversation History")] interface = gr.Interface( fn=[process_files, ask_question], inputs=[file_upload, text_input], outputs=outputs, live=True ) interface.launch() if __name__ == "__main__": setup_environment() gradio_interface()