Krish234 commited on
Commit
9f42c7b
·
verified ·
1 Parent(s): f214a3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -5
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import streamlit as st
2
  import tempfile
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
@@ -11,7 +12,6 @@ from langchain.llms import LlamaCpp
11
  from langchain.prompts import PromptTemplate
12
  import os
13
  import pandas as pd
14
- from transformers import AutoModel
15
 
16
 
17
  prompt_template_questions = """
@@ -96,21 +96,20 @@ if file_path:
96
  verbose=True,
97
  n_ctx=4096
98
  )
99
- model = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF")
100
  # Initialize question generation chain
101
  question_gen_chain = load_summarize_chain(llm=llm_question_gen, chain_type="refine", verbose=True,
102
  question_prompt=PROMPT_QUESTIONS, refine_prompt=REFINE_PROMPT_QUESTIONS)
103
  # Run question generation chain
104
  questions = question_gen_chain.run(docs_question_gen)
105
 
106
- # Initialize Large Language Model for answer generation
107
- llm_answer_gen = LlamaCpp(
108
  streaming = True,
109
  model_path = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF"),
110
  temperature=0.75,
111
  top_p=1,
112
  verbose=True,
113
- n_ctx=4096)
 
114
 
115
  # Create vector database for answer generation
116
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
@@ -154,3 +153,25 @@ if file_path:
154
  if file_path:
155
  os.remove(file_path)
156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModel
2
  import streamlit as st
3
  import tempfile
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
 
12
  from langchain.prompts import PromptTemplate
13
  import os
14
  import pandas as pd
 
15
 
16
 
17
  prompt_template_questions = """
 
96
  verbose=True,
97
  n_ctx=4096
98
  )
 
99
  # Initialize question generation chain
100
  question_gen_chain = load_summarize_chain(llm=llm_question_gen, chain_type="refine", verbose=True,
101
  question_prompt=PROMPT_QUESTIONS, refine_prompt=REFINE_PROMPT_QUESTIONS)
102
  # Run question generation chain
103
  questions = question_gen_chain.run(docs_question_gen)
104
 
105
+ llm_question_gen = LlamaCpp(
 
106
  streaming = True,
107
  model_path = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF"),
108
  temperature=0.75,
109
  top_p=1,
110
  verbose=True,
111
+ n_ctx=4096
112
+ )
113
 
114
  # Create vector database for answer generation
115
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
 
153
  if file_path:
154
  os.remove(file_path)
155
 
156
+
157
+
158
+
159
+ # Initialize Large Language Model for question generation
160
+ llm_question_gen = LlamaCpp(
161
+ streaming = True,
162
+ model_path = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF"),
163
+ temperature=0.75,
164
+ top_p=1,
165
+ verbose=True,
166
+ n_ctx=4096
167
+ )
168
+
169
+ # Initialize Large Language Model for answer generation
170
+ llm_answer_gen = LlamaCpp(
171
+ streaming = True,
172
+ model_path = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF"),
173
+ temperature=0.75,
174
+ top_p=1,
175
+ verbose=True,
176
+ n_ctx=4096)
177
+