Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import tempfile
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
@@ -11,7 +12,6 @@ from langchain.llms import LlamaCpp
|
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
import os
|
13 |
import pandas as pd
|
14 |
-
from transformers import AutoModel
|
15 |
|
16 |
|
17 |
prompt_template_questions = """
|
@@ -96,21 +96,20 @@ if file_path:
|
|
96 |
verbose=True,
|
97 |
n_ctx=4096
|
98 |
)
|
99 |
-
model = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF")
|
100 |
# Initialize question generation chain
|
101 |
question_gen_chain = load_summarize_chain(llm=llm_question_gen, chain_type="refine", verbose=True,
|
102 |
question_prompt=PROMPT_QUESTIONS, refine_prompt=REFINE_PROMPT_QUESTIONS)
|
103 |
# Run question generation chain
|
104 |
questions = question_gen_chain.run(docs_question_gen)
|
105 |
|
106 |
-
|
107 |
-
llm_answer_gen = LlamaCpp(
|
108 |
streaming = True,
|
109 |
model_path = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF"),
|
110 |
temperature=0.75,
|
111 |
top_p=1,
|
112 |
verbose=True,
|
113 |
-
n_ctx=4096
|
|
|
114 |
|
115 |
# Create vector database for answer generation
|
116 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
@@ -154,3 +153,25 @@ if file_path:
|
|
154 |
if file_path:
|
155 |
os.remove(file_path)
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel
|
2 |
import streamlit as st
|
3 |
import tempfile
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
import os
|
14 |
import pandas as pd
|
|
|
15 |
|
16 |
|
17 |
prompt_template_questions = """
|
|
|
96 |
verbose=True,
|
97 |
n_ctx=4096
|
98 |
)
|
|
|
99 |
# Initialize question generation chain
|
100 |
question_gen_chain = load_summarize_chain(llm=llm_question_gen, chain_type="refine", verbose=True,
|
101 |
question_prompt=PROMPT_QUESTIONS, refine_prompt=REFINE_PROMPT_QUESTIONS)
|
102 |
# Run question generation chain
|
103 |
questions = question_gen_chain.run(docs_question_gen)
|
104 |
|
105 |
+
llm_question_gen = LlamaCpp(
|
|
|
106 |
streaming = True,
|
107 |
model_path = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF"),
|
108 |
temperature=0.75,
|
109 |
top_p=1,
|
110 |
verbose=True,
|
111 |
+
n_ctx=4096
|
112 |
+
)
|
113 |
|
114 |
# Create vector database for answer generation
|
115 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
|
|
153 |
if file_path:
|
154 |
os.remove(file_path)
|
155 |
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
# Initialize Large Language Model for question generation
|
160 |
+
llm_question_gen = LlamaCpp(
|
161 |
+
streaming = True,
|
162 |
+
model_path = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF"),
|
163 |
+
temperature=0.75,
|
164 |
+
top_p=1,
|
165 |
+
verbose=True,
|
166 |
+
n_ctx=4096
|
167 |
+
)
|
168 |
+
|
169 |
+
# Initialize Large Language Model for answer generation
|
170 |
+
llm_answer_gen = LlamaCpp(
|
171 |
+
streaming = True,
|
172 |
+
model_path = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF"),
|
173 |
+
temperature=0.75,
|
174 |
+
top_p=1,
|
175 |
+
verbose=True,
|
176 |
+
n_ctx=4096)
|
177 |
+
|