Upload 2 files
Browse files- app.py +155 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tempfile
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.docstore.document import Document
|
6 |
+
from langchain.chains.summarize import load_summarize_chain
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.llms import LlamaCpp
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
import os
|
13 |
+
import pandas as pd
|
14 |
+
|
15 |
+
|
16 |
+
prompt_template_questions = """
|
17 |
+
You are an expert in creating practice questions based on study material.
|
18 |
+
Your goal is to prepare a student for their exam. You do this by asking questions about the text below:
|
19 |
+
|
20 |
+
------------
|
21 |
+
{text}
|
22 |
+
------------
|
23 |
+
|
24 |
+
Create questions that will prepare the student for their exam. Make sure not to lose any important information.
|
25 |
+
|
26 |
+
QUESTIONS:
|
27 |
+
"""
|
28 |
+
|
29 |
+
PROMPT_QUESTIONS = PromptTemplate(template=prompt_template_questions, input_variables=["text"])
|
30 |
+
|
31 |
+
refine_template_questions = """
|
32 |
+
You are an expert in creating practice questions based on study material.
|
33 |
+
Your goal is to help a student prepare for an exam.
|
34 |
+
We have received some practice questions to a certain extent: {existing_answer}.
|
35 |
+
We have the option to refine the existing questions or add new ones.
|
36 |
+
(only if necessary) with some more context below.
|
37 |
+
------------
|
38 |
+
{text}
|
39 |
+
------------
|
40 |
+
|
41 |
+
Given the new context, refine the original questions in English.
|
42 |
+
If the context is not helpful, please provide the original questions.
|
43 |
+
|
44 |
+
QUESTIONS:
|
45 |
+
"""
|
46 |
+
|
47 |
+
REFINE_PROMPT_QUESTIONS = PromptTemplate(
|
48 |
+
input_variables=["existing_answer", "text"],
|
49 |
+
template=refine_template_questions,
|
50 |
+
)
|
51 |
+
|
52 |
+
# Initialize Streamlit app
|
53 |
+
st.title('Question-Answer Pair Generator with Zephyr-7B')
|
54 |
+
st.markdown('<style>h1{color: orange; text-align: center;}</style>', unsafe_allow_html=True)
|
55 |
+
|
56 |
+
# File upload widget
|
57 |
+
uploaded_file = st.sidebar.file_uploader("Upload a PDF file", type=["pdf"])
|
58 |
+
|
59 |
+
# Set file path
|
60 |
+
file_path = None
|
61 |
+
|
62 |
+
# Check if a file is uploaded
|
63 |
+
if uploaded_file:
|
64 |
+
# Save the uploaded file to a temporary location
|
65 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
66 |
+
temp_file.write(uploaded_file.read())
|
67 |
+
file_path = temp_file.name
|
68 |
+
|
69 |
+
# Check if file_path is set
|
70 |
+
if file_path:
|
71 |
+
# Load data from the uploaded PDF
|
72 |
+
loader = PyPDFLoader(file_path)
|
73 |
+
data = loader.load()
|
74 |
+
|
75 |
+
# Combine text from Document into one string for question generation
|
76 |
+
text_question_gen = ''
|
77 |
+
for page in data:
|
78 |
+
text_question_gen += page.page_content
|
79 |
+
|
80 |
+
# Initialize Text Splitter for question generation
|
81 |
+
text_splitter_question_gen = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=50)
|
82 |
+
|
83 |
+
# Split text into chunks for question generation
|
84 |
+
text_chunks_question_gen = text_splitter_question_gen.split_text(text_question_gen)
|
85 |
+
|
86 |
+
# Convert chunks into Documents for question generation
|
87 |
+
docs_question_gen = [Document(page_content=t) for t in text_chunks_question_gen]
|
88 |
+
|
89 |
+
# Initialize Large Language Model for question generation
|
90 |
+
llm_question_gen = LlamaCpp(
|
91 |
+
streaming = True,
|
92 |
+
model_path="zephyr-7b-alpha.Q4_K_M.gguf",
|
93 |
+
temperature=0.75,
|
94 |
+
top_p=1,
|
95 |
+
verbose=True,
|
96 |
+
n_ctx=4096
|
97 |
+
)
|
98 |
+
|
99 |
+
# Initialize question generation chain
|
100 |
+
question_gen_chain = load_summarize_chain(llm=llm_question_gen, chain_type="refine", verbose=True,
|
101 |
+
question_prompt=PROMPT_QUESTIONS, refine_prompt=REFINE_PROMPT_QUESTIONS)
|
102 |
+
# Run question generation chain
|
103 |
+
questions = question_gen_chain.run(docs_question_gen)
|
104 |
+
|
105 |
+
# Initialize Large Language Model for answer generation
|
106 |
+
llm_answer_gen = LlamaCpp(
|
107 |
+
streaming = True,
|
108 |
+
model_path="zephyr-7b-alpha.Q4_K_M.gguf",
|
109 |
+
temperature=0.75,
|
110 |
+
top_p=1,
|
111 |
+
verbose=True,
|
112 |
+
n_ctx=4096)
|
113 |
+
|
114 |
+
# Create vector database for answer generation
|
115 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
116 |
+
|
117 |
+
# Initialize vector store for answer generation
|
118 |
+
vector_store = Chroma.from_documents(docs_question_gen, embeddings)
|
119 |
+
|
120 |
+
# Initialize retrieval chain for answer generation
|
121 |
+
answer_gen_chain = RetrievalQA.from_chain_type(llm=llm_answer_gen, chain_type="stuff",
|
122 |
+
retriever=vector_store.as_retriever(k=2))
|
123 |
+
|
124 |
+
# Split generated questions into a list of questions
|
125 |
+
question_list = questions.split("\n")
|
126 |
+
|
127 |
+
# Answer each question and save to a file
|
128 |
+
question_answer_pairs = []
|
129 |
+
|
130 |
+
for question in question_list:
|
131 |
+
st.write("Question: ", question)
|
132 |
+
answer = answer_gen_chain.run(question)
|
133 |
+
question_answer_pairs.append([question, answer])
|
134 |
+
st.write("Answer: ", answer)
|
135 |
+
st.write("--------------------------------------------------\n\n")
|
136 |
+
|
137 |
+
# Create a directory for storing answers
|
138 |
+
answers_dir = os.path.join(tempfile.gettempdir(), "answers")
|
139 |
+
os.makedirs(answers_dir, exist_ok=True)
|
140 |
+
|
141 |
+
# Create a DataFrame from the list of question-answer pairs
|
142 |
+
qa_df = pd.DataFrame(question_answer_pairs, columns=["Question", "Answer"])
|
143 |
+
|
144 |
+
# Save the DataFrame to a CSV file
|
145 |
+
csv_file_path = os.path.join(answers_dir, "questions_and_answers.csv")
|
146 |
+
qa_df.to_csv(csv_file_path, index=False)
|
147 |
+
|
148 |
+
# Create a download button for the questions and answers CSV file
|
149 |
+
st.markdown('### Download Questions and Answers in CSV')
|
150 |
+
st.download_button("Download Questions and Answers (CSV)", csv_file_path)
|
151 |
+
|
152 |
+
# Cleanup temporary files
|
153 |
+
if file_path:
|
154 |
+
os.remove(file_path)
|
155 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
streamlit
|
3 |
+
huggingface_hub
|
4 |
+
Chromadb
|
5 |
+
pypdf
|
6 |
+
sentence-transformers
|
7 |
+
torch
|
8 |
+
accelerate
|
9 |
+
llama-cpp-python
|
10 |
+
|