Spaces:
Running
Running
import os | |
import gradio as gr | |
import outetts | |
from outetts.version.v2.interface import _DEFAULT_SPEAKERS | |
import torch | |
import spaces | |
def get_available_speakers(): | |
speakers = list(_DEFAULT_SPEAKERS.keys()) | |
return speakers | |
def cleanup_cuda(): | |
torch.cuda.empty_cache() | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
def generate_tts(text, temperature, repetition_penalty, speaker_selection, reference_audio): | |
# Clear CUDA cache before starting | |
cleanup_cuda() | |
try: | |
model_config = outetts.HFModelConfig_v2( | |
model_path="OuteAI/OuteTTS-0.3-1B", | |
tokenizer_path="OuteAI/OuteTTS-0.3-1B", | |
dtype=torch.bfloat16, | |
device="cuda" | |
) | |
interface = outetts.InterfaceHF(model_version="0.3", cfg=model_config) | |
if reference_audio: | |
speaker = interface.create_speaker(reference_audio) | |
elif speaker_selection and speaker_selection != "None": | |
speaker = interface.load_default_speaker(speaker_selection) | |
else: | |
speaker = None | |
gen_cfg = outetts.GenerationConfig( | |
text=text, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
max_length=4096, | |
speaker=speaker, | |
) | |
output = interface.generate(config=gen_cfg) | |
if output.audio is None: | |
raise ValueError("Model failed to generate audio. This may be due to input length constraints or early EOS token.") | |
output_path = "output.wav" | |
output.save(output_path) | |
# Cleanup after generation | |
cleanup_cuda() | |
del interface | |
del model_config | |
del output | |
return output_path, None | |
except Exception as e: | |
cleanup_cuda() | |
return None, str(e) | |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as demo: | |
gr.Markdown("# Voice Clone Multilingual TTS") | |
error_box = gr.Textbox(label="Error Messages", visible=False) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
text_input = gr.Textbox( | |
label="Text to Synthesize", | |
placeholder="Enter text here...", | |
lines=8 | |
) | |
submit_button = gr.Button("Generate Speech") | |
with gr.Column(scale=1): | |
audio_output = gr.Audio( | |
label="Generated Audio", | |
type="filepath" | |
) | |
with gr.Group(): | |
speaker_dropdown = gr.Dropdown( | |
choices=get_available_speakers(), | |
value="en_male_1", | |
label="Speaker Selection" | |
) | |
temperature = gr.Slider( | |
0.1, 1.0, | |
value=0.1, | |
label="Temperature (lower = more stable tone, higher = more expressive)" | |
) | |
repetition_penalty = gr.Slider( | |
0.5, 2.0, | |
value=1.1, | |
label="Repetition Penalty" | |
) | |
reference_audio = gr.Audio( | |
label="Reference Audio (for voice cloning)", | |
type="filepath" | |
) | |
gr.Markdown(""" | |
### Voice Cloning Guidelines: | |
- Use around 7-10 seconds of clear, noise-free audio | |
- For transcription interface will use Whisper turbo to transcribe the audio file | |
- Longer audio clips will reduce maximum output length | |
- Custom speaker overrides speaker selection | |
""") | |
submit_button.click( | |
fn=generate_tts, | |
inputs=[ | |
text_input, | |
temperature, | |
repetition_penalty, | |
speaker_dropdown, | |
reference_audio, | |
], | |
outputs=[audio_output, error_box] | |
).then( | |
fn=lambda x: gr.update(visible=bool(x)), | |
inputs=[error_box], | |
outputs=[error_box] | |
) | |
if __name__ == "__main__": | |
demo.launch() |