File size: 69,021 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
# Adapted from Latte

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Latte: https://github.com/Vchitect/Latte
# --------------------------------------------------------


from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, Optional, Tuple

import torch
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import (
    ImagePositionalEmbeddings,
    PatchEmbed,
    PixArtAlphaCombinedTimestepSizeEmbeddings,
    PixArtAlphaTextProjection,
    SinusoidalPositionalEmbedding,
    get_1d_sincos_pos_embed_from_grid,
)
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate
from diffusers.utils.torch_utils import maybe_allow_in_graph
from einops import rearrange, repeat
from torch import nn

from videosys.core.comm import (
    all_to_all_with_pad,
    gather_sequence,
    get_spatial_pad,
    get_temporal_pad,
    set_spatial_pad,
    set_temporal_pad,
    split_sequence,
)
from videosys.core.pab_mgr import (
    enable_pab,
    get_mlp_output,
    if_broadcast_cross,
    if_broadcast_mlp,
    if_broadcast_spatial,
    if_broadcast_temporal,
    save_mlp_output,
)
from videosys.core.parallel_mgr import (
    enable_sequence_parallel,
    get_cfg_parallel_group,
    get_cfg_parallel_size,
    get_sequence_parallel_group,
)
from videosys.utils.utils import batch_func


@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


class FeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
    """

    def __init__(
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
        final_dropout: bool = False,
    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim
        linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear

        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
        elif activation_fn == "geglu-approximate":
            act_fn = ApproximateGELU(dim, inner_dim)

        self.net = nn.ModuleList([])
        # project in
        self.net.append(act_fn)
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(linear_cls(inner_dim, dim_out))
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))

    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
        compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
        for module in self.net:
            if isinstance(module, compatible_cls):
                hidden_states = module(hidden_states, scale)
            else:
                hidden_states = module(hidden_states)
        return hidden_states


@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
        norm_eps: float = 1e-5,
        final_dropout: bool = False,
        attention_type: str = "default",
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
        ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
        ada_norm_bias: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
        block_idx: Optional[int] = None,
    ):
        super().__init__()
        self.only_cross_attention = only_cross_attention

        # We keep these boolean flags for backward-compatibility.
        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"
        self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )

        self.norm_type = norm_type
        self.num_embeds_ada_norm = num_embeds_ada_norm

        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        if norm_type == "ada_norm":
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif norm_type == "ada_norm_zero":
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        elif norm_type == "ada_norm_continuous":
            self.norm1 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "rms_norm",
            )
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
            out_bias=attention_out_bias,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None or double_self_attention:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            if norm_type == "ada_norm":
                self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
            elif norm_type == "ada_norm_continuous":
                self.norm2 = AdaLayerNormContinuous(
                    dim,
                    ada_norm_continous_conditioning_embedding_dim,
                    norm_elementwise_affine,
                    norm_eps,
                    ada_norm_bias,
                    "rms_norm",
                )
            else:
                self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)

            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim if not double_self_attention else None,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
                out_bias=attention_out_bias,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        if norm_type == "ada_norm_continuous":
            self.norm3 = AdaLayerNormContinuous(
                dim,
                ada_norm_continous_conditioning_embedding_dim,
                norm_elementwise_affine,
                norm_eps,
                ada_norm_bias,
                "layer_norm",
            )

        elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]:
            self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
        elif norm_type == "layer_norm_i2vgen":
            self.norm3 = None

        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
        )

        # 4. Fuser
        if attention_type == "gated" or attention_type == "gated-text-image":
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

        # 5. Scale-shift for PixArt-Alpha.
        if norm_type == "ada_norm_single":
            self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

        # pab
        self.cross_last = None
        self.cross_count = 0
        self.spatial_last = None
        self.spatial_count = 0
        self.block_idx = block_idx
        self.mlp_count = 0

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def set_cross_last(self, last_out: torch.Tensor):
        self.cross_last = last_out

    def set_spatial_last(self, last_out: torch.Tensor):
        self.spatial_last = last_out

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        org_timestep: Optional[torch.LongTensor] = None,
        all_timesteps=None,
    ) -> torch.FloatTensor:
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]
        # 1. Prepare GLIGEN inputs
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)

        if enable_pab():
            broadcast_spatial, self.spatial_count = if_broadcast_spatial(
                int(org_timestep[0]), self.spatial_count, self.block_idx
            )

        if enable_pab() and broadcast_spatial:
            attn_output = self.spatial_last
            assert self.use_ada_layer_norm_single
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
        else:
            if self.norm_type == "ada_norm":
                norm_hidden_states = self.norm1(hidden_states, timestep)
            elif self.norm_type == "ada_norm_zero":
                norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                    hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
            elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
                norm_hidden_states = self.norm1(hidden_states)
            elif self.norm_type == "ada_norm_continuous":
                norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
            elif self.norm_type == "ada_norm_single":
                shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                    self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
                ).chunk(6, dim=1)
                norm_hidden_states = self.norm1(hidden_states)
                norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
                norm_hidden_states = norm_hidden_states.squeeze(1)
            else:
                raise ValueError("Incorrect norm used")

            if self.pos_embed is not None:
                norm_hidden_states = self.pos_embed(norm_hidden_states)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                attention_mask=attention_mask,
                **cross_attention_kwargs,
            )
            if self.norm_type == "ada_norm_zero":
                attn_output = gate_msa.unsqueeze(1) * attn_output
            elif self.norm_type == "ada_norm_single":
                attn_output = gate_msa * attn_output

            if enable_pab():
                self.set_spatial_last(attn_output)

        hidden_states = attn_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        # 1.2 GLIGEN Control
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

        # 3. Cross-Attention
        if self.attn2 is not None:
            broadcast_cross, self.cross_count = if_broadcast_cross(int(org_timestep[0]), self.cross_count)
            if broadcast_cross:
                hidden_states = hidden_states + self.cross_last
            else:
                if self.norm_type == "ada_norm":
                    norm_hidden_states = self.norm2(hidden_states, timestep)
                elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
                    norm_hidden_states = self.norm2(hidden_states)
                elif self.norm_type == "ada_norm_single":
                    # For PixArt norm2 isn't applied here:
                    # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                    norm_hidden_states = hidden_states
                elif self.norm_type == "ada_norm_continuous":
                    norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
                else:
                    raise ValueError("Incorrect norm")

                if self.pos_embed is not None and self.norm_type != "ada_norm_single":
                    norm_hidden_states = self.pos_embed(norm_hidden_states)

                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )

                if enable_pab():
                    self.set_cross_last(attn_output)

                hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        # i2vgen doesn't have this norm 🤷‍♂️
        if enable_pab():
            broadcast_mlp, self.mlp_count, broadcast_next, broadcast_range = if_broadcast_mlp(
                int(org_timestep[0]),
                self.mlp_count,
                self.block_idx,
                all_timesteps.tolist(),
                is_temporal=False,
            )

        if enable_pab() and broadcast_mlp:
            ff_output = get_mlp_output(
                broadcast_range,
                timestep=int(org_timestep[0]),
                block_idx=self.block_idx,
                is_temporal=False,
            )
        else:
            if self.norm_type == "ada_norm_continuous":
                norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
            elif not self.norm_type == "ada_norm_single":
                norm_hidden_states = self.norm3(hidden_states)

            if self.norm_type == "ada_norm_zero":
                norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

            if self.norm_type == "ada_norm_single":
                norm_hidden_states = self.norm2(hidden_states)
                norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

            ff_output = self.ff(norm_hidden_states)

            if self.norm_type == "ada_norm_zero":
                ff_output = gate_mlp.unsqueeze(1) * ff_output
            elif self.norm_type == "ada_norm_single":
                ff_output = gate_mlp * ff_output

            if enable_pab() and broadcast_next:
                # spatial
                save_mlp_output(
                    timestep=int(org_timestep[0]),
                    block_idx=self.block_idx,
                    ff_output=ff_output,
                    is_temporal=False,
                )

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states


@maybe_allow_in_graph
class BasicTransformerBlock_(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
        norm_eps: float = 1e-5,
        final_dropout: bool = False,
        attention_type: str = "default",
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
        block_idx: Optional[int] = None,
    ):
        super().__init__()
        self.only_cross_attention = only_cross_attention

        self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
        self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
        self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
        self.use_layer_norm = norm_type == "layer_norm"

        if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
            raise ValueError(
                f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
                f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
            )

        if positional_embeddings and (num_positional_embeddings is None):
            raise ValueError(
                "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
            )

        if positional_embeddings == "sinusoidal":
            self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
        else:
            self.pos_embed = None

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        elif self.use_ada_layer_norm_zero:
            self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)  # go here

        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
        )

        # # 2. Cross-Attn
        # if cross_attention_dim is not None or double_self_attention:
        #     # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
        #     # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
        #     # the second cross attention block.
        #     self.norm2 = (
        #         AdaLayerNorm(dim, num_embeds_ada_norm)
        #         if self.use_ada_layer_norm
        #         else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
        #     )
        #     self.attn2 = Attention(
        #         query_dim=dim,
        #         cross_attention_dim=cross_attention_dim if not double_self_attention else None,
        #         heads=num_attention_heads,
        #         dim_head=attention_head_dim,
        #         dropout=dropout,
        #         bias=attention_bias,
        #         upcast_attention=upcast_attention,
        #     )  # is self-attn if encoder_hidden_states is none
        # else:
        #     self.norm2 = None
        #     self.attn2 = None

        # 3. Feed-forward
        # if not self.use_ada_layer_norm_single:
        #     self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)

        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)

        # 4. Fuser
        if attention_type == "gated" or attention_type == "gated-text-image":
            self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)

        # 5. Scale-shift for PixArt-Alpha.
        if self.use_ada_layer_norm_single:
            self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

        # pab
        self.last_out = None
        self.mlp_count = 0
        self.block_idx = block_idx
        self.count = 0

    def set_last_out(self, last_out: torch.Tensor):
        self.last_out = last_out

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
        org_timestep: Optional[torch.LongTensor] = None,
        all_timesteps=None,
    ) -> torch.FloatTensor:
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        # 1. Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

        # 2. Prepare GLIGEN inputs
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)

        if enable_pab():
            broadcast_temporal, self.count = if_broadcast_temporal(int(org_timestep[0]), self.count)

        if enable_pab() and broadcast_temporal:
            attn_output = self.last_out
            assert self.use_ada_layer_norm_single
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
        else:
            if self.use_ada_layer_norm:
                norm_hidden_states = self.norm1(hidden_states, timestep)
            elif self.use_ada_layer_norm_zero:
                norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                    hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
            elif self.use_layer_norm:
                norm_hidden_states = self.norm1(hidden_states)
            elif self.use_ada_layer_norm_single:  # go here
                shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                    self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
                ).chunk(6, dim=1)
                norm_hidden_states = self.norm1(hidden_states)
                norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
                # norm_hidden_states = norm_hidden_states.squeeze(1)
            else:
                raise ValueError("Incorrect norm used")

            if self.pos_embed is not None:
                norm_hidden_states = self.pos_embed(norm_hidden_states)

            if enable_sequence_parallel():
                norm_hidden_states = self.dynamic_switch(norm_hidden_states, to_spatial_shard=True)

            attn_output = self.attn1(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
                attention_mask=attention_mask,
                **cross_attention_kwargs,
            )

            if enable_sequence_parallel():
                attn_output = self.dynamic_switch(attn_output, to_spatial_shard=False)

            if self.use_ada_layer_norm_zero:
                attn_output = gate_msa.unsqueeze(1) * attn_output
            elif self.use_ada_layer_norm_single:
                attn_output = gate_msa * attn_output

            if enable_pab():
                self.last_out = attn_output

        hidden_states = attn_output + hidden_states

        if enable_pab():
            broadcast_mlp, self.mlp_count, broadcast_next, broadcast_range = if_broadcast_mlp(
                int(org_timestep[0]),
                self.mlp_count,
                self.block_idx,
                all_timesteps.tolist(),
                is_temporal=True,
            )

        if enable_pab() and broadcast_mlp:
            ff_output = get_mlp_output(
                broadcast_range,
                timestep=int(org_timestep[0]),
                block_idx=self.block_idx,
                is_temporal=True,
            )
        else:
            if hidden_states.ndim == 4:
                hidden_states = hidden_states.squeeze(1)

            # 2.5 GLIGEN Control
            if gligen_kwargs is not None:
                hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

            if self.use_ada_layer_norm_zero:
                norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

            if self.use_ada_layer_norm_single:
                # norm_hidden_states = self.norm2(hidden_states)
                norm_hidden_states = self.norm3(hidden_states)
                norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

            if self._chunk_size is not None:
                # "feed_forward_chunk_size" can be used to save memory
                if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
                    raise ValueError(
                        f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
                    )

                num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
                ff_output = torch.cat(
                    [
                        self.ff(hid_slice, scale=lora_scale)
                        for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
                    ],
                    dim=self._chunk_dim,
                )
            else:
                ff_output = self.ff(norm_hidden_states, scale=lora_scale)

            if self.use_ada_layer_norm_zero:
                ff_output = gate_mlp.unsqueeze(1) * ff_output
            elif self.use_ada_layer_norm_single:
                ff_output = gate_mlp * ff_output

            if enable_pab() and broadcast_next:
                save_mlp_output(
                    timestep=int(org_timestep[0]),
                    block_idx=self.block_idx,
                    ff_output=ff_output,
                    is_temporal=True,
                )

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states

    def dynamic_switch(self, x, to_spatial_shard: bool):
        if to_spatial_shard:
            scatter_dim, gather_dim = 0, 1
            scatter_pad = get_spatial_pad()
            gather_pad = get_temporal_pad()
        else:
            scatter_dim, gather_dim = 1, 0
            scatter_pad = get_temporal_pad()
            gather_pad = get_spatial_pad()
        x = all_to_all_with_pad(
            x,
            get_sequence_parallel_group(),
            scatter_dim=scatter_dim,
            gather_dim=gather_dim,
            scatter_pad=scatter_pad,
            gather_pad=gather_pad,
        )
        return x


class AdaLayerNormSingle(nn.Module):
    r"""
    Norm layer adaptive layer norm single (adaLN-single).

    As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        use_additional_conditions (`bool`): To use additional conditions for normalization or not.
    """

    def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
        super().__init__()

        self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
            embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
        )

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)

    def forward(
        self,
        timestep: torch.Tensor,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
        batch_size: int = None,
        hidden_dtype: Optional[torch.dtype] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        # No modulation happening here.
        embedded_timestep = self.emb(
            timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None
        )
        return self.linear(self.silu(embedded_timestep)), embedded_timestep


@dataclass
class Transformer3DModelOutput(BaseOutput):
    """
    The output of [`Transformer2DModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
    """

    sample: torch.FloatTensor


class LatteT2V(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    """
    A 2D Transformer model for image-like data.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            The number of channels in the input and output (specify if the input is **continuous**).
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
        num_vector_embeds (`int`, *optional*):
            The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*):
            The number of diffusion steps used during training. Pass if at least one of the norm_layers is
            `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
            added to the hidden states.

            During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the `TransformerBlocks` attention should contain a bias parameter.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        patch_size: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_type: str = "layer_norm",
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        attention_type: str = "default",
        caption_channels: int = None,
        video_length: int = 16,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.video_length = video_length

        conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
        linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear

        # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = (in_channels is not None) and (patch_size is None)
        self.is_input_vectorized = num_vector_embeds is not None
        self.is_input_patches = in_channels is not None and patch_size is not None

        if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
            deprecation_message = (
                f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
                " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
                " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
                " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
                " would be very nice if you could open a Pull request for the `transformer/config.json` file"
            )
            deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
            norm_type = "ada_norm"

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif self.is_input_vectorized and self.is_input_patches:
            raise ValueError(
                f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
                " sure that either `num_vector_embeds` or `num_patches` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
            raise ValueError(
                f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
                f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
            if use_linear_projection:
                self.proj_in = linear_cls(in_channels, inner_dim)
            else:
                self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )
        elif self.is_input_patches:
            assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"

            self.height = sample_size
            self.width = sample_size

            self.patch_size = patch_size
            interpolation_scale = self.config.sample_size // 64  # => 64 (= 512 pixart) has interpolation scale 1
            interpolation_scale = max(interpolation_scale, 1)
            self.pos_embed = PatchEmbed(
                height=sample_size,
                width=sample_size,
                patch_size=patch_size,
                in_channels=in_channels,
                embed_dim=inner_dim,
                interpolation_scale=interpolation_scale,
            )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    double_self_attention=double_self_attention,
                    upcast_attention=upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                    attention_type=attention_type,
                    block_idx=d,
                )
                for d in range(num_layers)
            ]
        )

        # Define temporal transformers blocks
        self.temporal_transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock_(  # one attention
                    inner_dim,
                    num_attention_heads,  # num_attention_heads
                    attention_head_dim,  # attention_head_dim 72
                    dropout=dropout,
                    cross_attention_dim=None,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    double_self_attention=False,
                    upcast_attention=upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                    attention_type=attention_type,
                    block_idx=d,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        self.out_channels = in_channels if out_channels is None else out_channels
        if self.is_input_continuous:
            # TODO: should use out_channels for continuous projections
            if use_linear_projection:
                self.proj_out = linear_cls(inner_dim, in_channels)
            else:
                self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
        elif self.is_input_patches and norm_type != "ada_norm_single":
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
            self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
        elif self.is_input_patches and norm_type == "ada_norm_single":
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
            self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)

        # 5. PixArt-Alpha blocks.
        self.adaln_single = None
        self.use_additional_conditions = False
        if norm_type == "ada_norm_single":
            self.use_additional_conditions = self.config.sample_size == 128  # False, 128 -> 1024
            # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
            # additional conditions until we find better name
            self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)

        self.caption_projection = None
        if caption_channels is not None:
            self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)

        self.gradient_checkpointing = False

        # define temporal positional embedding
        temp_pos_embed = self.get_1d_sincos_temp_embed(inner_dim, video_length)  # 1152 hidden size
        self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False)

    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        timestep: Optional[torch.LongTensor] = None,
        all_timesteps=None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        use_image_num: int = 0,
        enable_temporal_attentions: bool = True,
        return_dict: bool = True,
    ):
        """
        The [`Transformer2DModel`] forward method.

        Args:
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous):
                Input `hidden_states`.
            encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `torch.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
                above. This bias will be added to the cross-attention scores.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """

        # 0. Split batch for data parallelism
        if get_cfg_parallel_size() > 1:
            (
                hidden_states,
                timestep,
                encoder_hidden_states,
                added_cond_kwargs,
                class_labels,
                attention_mask,
                encoder_attention_mask,
            ) = batch_func(
                partial(split_sequence, process_group=get_cfg_parallel_group(), dim=0),
                hidden_states,
                timestep,
                encoder_hidden_states,
                added_cond_kwargs,
                class_labels,
                attention_mask,
                encoder_attention_mask,
            )

        input_batch_size, c, frame, h, w = hidden_states.shape
        frame = frame - use_image_num
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous()
        org_timestep = timestep

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:  # ndim == 2 means no image joint
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
            encoder_attention_mask = repeat(encoder_attention_mask, "b 1 l -> (b f) 1 l", f=frame).contiguous()
        elif encoder_attention_mask is not None and encoder_attention_mask.ndim == 3:  # ndim == 3 means image joint
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask_video = encoder_attention_mask[:, :1, ...]
            encoder_attention_mask_video = repeat(
                encoder_attention_mask_video, "b 1 l -> b (1 f) l", f=frame
            ).contiguous()
            encoder_attention_mask_image = encoder_attention_mask[:, 1:, ...]
            encoder_attention_mask = torch.cat([encoder_attention_mask_video, encoder_attention_mask_image], dim=1)
            encoder_attention_mask = rearrange(encoder_attention_mask, "b n l -> (b n) l").contiguous().unsqueeze(1)

        # Retrieve lora scale.
        cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

        # 1. Input
        if self.is_input_patches:  # here
            height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
            num_patches = height * width

            hidden_states = self.pos_embed(hidden_states)  # alrady add positional embeddings

            if self.adaln_single is not None:
                if self.use_additional_conditions and added_cond_kwargs is None:
                    raise ValueError(
                        "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
                    )
                # batch_size = hidden_states.shape[0]
                batch_size = input_batch_size
                timestep, embedded_timestep = self.adaln_single(
                    timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
                )

        # 2. Blocks
        if self.caption_projection is not None:
            batch_size = hidden_states.shape[0]
            encoder_hidden_states = self.caption_projection(encoder_hidden_states)  # 3 120 1152

            if use_image_num != 0 and self.training:
                encoder_hidden_states_video = encoder_hidden_states[:, :1, ...]
                encoder_hidden_states_video = repeat(
                    encoder_hidden_states_video, "b 1 t d -> b (1 f) t d", f=frame
                ).contiguous()
                encoder_hidden_states_image = encoder_hidden_states[:, 1:, ...]
                encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1)
                encoder_hidden_states_spatial = rearrange(encoder_hidden_states, "b f t d -> (b f) t d").contiguous()
            else:
                encoder_hidden_states_spatial = repeat(
                    encoder_hidden_states, "b t d -> (b f) t d", f=frame
                ).contiguous()

        # prepare timesteps for spatial and temporal block
        timestep_spatial = repeat(timestep, "b d -> (b f) d", f=frame + use_image_num).contiguous()
        timestep_temp = repeat(timestep, "b d -> (b p) d", p=num_patches).contiguous()

        if enable_sequence_parallel():
            set_temporal_pad(frame + use_image_num)
            set_spatial_pad(num_patches)
            hidden_states = self.split_from_second_dim(hidden_states, input_batch_size)
            encoder_hidden_states_spatial = self.split_from_second_dim(encoder_hidden_states_spatial, input_batch_size)
            timestep_spatial = self.split_from_second_dim(timestep_spatial, input_batch_size)
            temp_pos_embed = split_sequence(
                self.temp_pos_embed, get_sequence_parallel_group(), dim=1, grad_scale="down", pad=get_temporal_pad()
            )
        else:
            temp_pos_embed = self.temp_pos_embed

        for i, (spatial_block, temp_block) in enumerate(zip(self.transformer_blocks, self.temporal_transformer_blocks)):
            if self.training and self.gradient_checkpointing:
                hidden_states = torch.utils.checkpoint.checkpoint(
                    spatial_block,
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states_spatial,
                    encoder_attention_mask,
                    timestep_spatial,
                    cross_attention_kwargs,
                    class_labels,
                    use_reentrant=False,
                )

                if enable_temporal_attentions:
                    hidden_states = rearrange(hidden_states, "(b f) t d -> (b t) f d", b=input_batch_size).contiguous()

                    if use_image_num != 0:  # image-video joitn training
                        hidden_states_video = hidden_states[:, :frame, ...]
                        hidden_states_image = hidden_states[:, frame:, ...]

                        if i == 0:
                            hidden_states_video = hidden_states_video + temp_pos_embed

                        hidden_states_video = torch.utils.checkpoint.checkpoint(
                            temp_block,
                            hidden_states_video,
                            None,  # attention_mask
                            None,  # encoder_hidden_states
                            None,  # encoder_attention_mask
                            timestep_temp,
                            cross_attention_kwargs,
                            class_labels,
                            use_reentrant=False,
                        )

                        hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1)
                        hidden_states = rearrange(
                            hidden_states, "(b t) f d -> (b f) t d", b=input_batch_size
                        ).contiguous()

                    else:
                        if i == 0:
                            hidden_states = hidden_states + temp_pos_embed

                        hidden_states = torch.utils.checkpoint.checkpoint(
                            temp_block,
                            hidden_states,
                            None,  # attention_mask
                            None,  # encoder_hidden_states
                            None,  # encoder_attention_mask
                            timestep_temp,
                            cross_attention_kwargs,
                            class_labels,
                            use_reentrant=False,
                        )

                        hidden_states = rearrange(
                            hidden_states, "(b t) f d -> (b f) t d", b=input_batch_size
                        ).contiguous()
            else:
                hidden_states = spatial_block(
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states_spatial,
                    encoder_attention_mask,
                    timestep_spatial,
                    cross_attention_kwargs,
                    class_labels,
                    None,
                    org_timestep,
                    all_timesteps=all_timesteps,
                )

                if enable_temporal_attentions:
                    hidden_states = rearrange(hidden_states, "(b f) t d -> (b t) f d", b=input_batch_size).contiguous()

                    if use_image_num != 0 and self.training:
                        hidden_states_video = hidden_states[:, :frame, ...]
                        hidden_states_image = hidden_states[:, frame:, ...]

                        hidden_states_video = temp_block(
                            hidden_states_video,
                            None,  # attention_mask
                            None,  # encoder_hidden_states
                            None,  # encoder_attention_mask
                            timestep_temp,
                            cross_attention_kwargs,
                            class_labels,
                            org_timestep,
                        )

                        hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1)
                        hidden_states = rearrange(
                            hidden_states, "(b t) f d -> (b f) t d", b=input_batch_size
                        ).contiguous()

                    else:
                        if i == 0 and frame > 1:
                            hidden_states = hidden_states + temp_pos_embed
                        hidden_states = temp_block(
                            hidden_states,
                            None,  # attention_mask
                            None,  # encoder_hidden_states
                            None,  # encoder_attention_mask
                            timestep_temp,
                            cross_attention_kwargs,
                            class_labels,
                            org_timestep,
                            all_timesteps=all_timesteps,
                        )

                        hidden_states = rearrange(
                            hidden_states, "(b t) f d -> (b f) t d", b=input_batch_size
                        ).contiguous()

        if enable_sequence_parallel():
            hidden_states = self.gather_from_second_dim(hidden_states, input_batch_size)

        if self.is_input_patches:
            if self.config.norm_type != "ada_norm_single":
                conditioning = self.transformer_blocks[0].norm1.emb(
                    timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
                shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
                hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
                hidden_states = self.proj_out_2(hidden_states)
            elif self.config.norm_type == "ada_norm_single":
                embedded_timestep = repeat(embedded_timestep, "b d -> (b f) d", f=frame + use_image_num).contiguous()
                shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
                hidden_states = self.norm_out(hidden_states)
                # Modulation
                hidden_states = hidden_states * (1 + scale) + shift
                hidden_states = self.proj_out(hidden_states)

            # unpatchify
            if self.adaln_single is None:
                height = width = int(hidden_states.shape[1] ** 0.5)
            hidden_states = hidden_states.reshape(
                shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
            )
            hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
            output = hidden_states.reshape(
                shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
            )
            output = rearrange(output, "(b f) c h w -> b c f h w", b=input_batch_size).contiguous()

        # 3. Gather batch for data parallelism
        if get_cfg_parallel_size() > 1:
            output = gather_sequence(output, get_cfg_parallel_group(), dim=0)

        if not return_dict:
            return (output,)

        return Transformer3DModelOutput(sample=output)

    def get_1d_sincos_temp_embed(self, embed_dim, length):
        pos = torch.arange(0, length).unsqueeze(1)
        return get_1d_sincos_pos_embed_from_grid(embed_dim, pos)

    def split_from_second_dim(self, x, batch_size):
        x = x.view(batch_size, -1, *x.shape[1:])
        x = split_sequence(x, get_sequence_parallel_group(), dim=1, grad_scale="down", pad=get_temporal_pad())
        x = x.reshape(-1, *x.shape[2:])
        return x

    def gather_from_second_dim(self, x, batch_size):
        x = x.view(batch_size, -1, *x.shape[1:])
        x = gather_sequence(x, get_sequence_parallel_group(), dim=1, grad_scale="up", pad=get_temporal_pad())
        x = x.reshape(-1, *x.shape[2:])
        return x