Spaces:
Running
Running
from fastapi import FastAPI, HTTPException, Request | |
from fastapi.responses import StreamingResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
import aiohttp | |
import json | |
import time | |
import random | |
import ast | |
import urllib.parse | |
from apscheduler.schedulers.background import BackgroundScheduler | |
import os | |
from pydantic import BaseModel | |
SAMBA_NOVA_API_KEY = os.environ.get("SAMBA_NOVA_API_KEY", None) | |
app = FastAPI() | |
# Time-Limited Infinite Cache | |
cache = {} | |
CACHE_DURATION = 120 | |
# Function to clean up expired cache entries | |
def cleanup_cache(): | |
current_time = time.time() | |
for key, (value, timestamp) in list(cache.items()): | |
if current_time - timestamp > CACHE_DURATION: | |
del cache[key] | |
# Initialize and start the scheduler | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(cleanup_cache, 'interval', seconds=60) # Run cleanup every 60 seconds | |
scheduler.start() | |
class StreamTextRequest(BaseModel): | |
query: str | |
history: str = "[]" | |
model: str = "llama3-8b" | |
api_key: str = None | |
async def stream_text(request: StreamTextRequest): | |
current_time = time.time() | |
cache_key = (request.query, request.history, request.model) | |
# Check if the request is in the cache and not expired | |
if cache_key in cache: | |
cached_response, timestamp = cache[cache_key] | |
return StreamingResponse(iter([f"{cached_response}"]), media_type='text/event-stream') | |
# Model selection logic | |
if "405" in request.model: | |
fmodel = "Meta-Llama-3.1-405B-Instruct" | |
if "70" in request.model: | |
fmodel = "Meta-Llama-3.1-70B-Instruct" | |
else: | |
fmodel = "Meta-Llama-3.1-8B-Instruct" | |
system_message = """You are Voicee, a friendly and intelligent voice assistant created by KingNish. Your primary goal is to provide accurate, concise, and engaging responses while maintaining a positive and upbeat tone. Always aim to provide clear and relevant information that directly addresses the user's query, but feel free to sprinkle in a dash of humor—after all, laughter is the best app! Keep your responses brief and to the point, avoiding unnecessary details or tangents, unless they’re hilariously relevant. Use a friendly and approachable tone to create a pleasant interaction, and don’t shy away from a cheeky pun or two! Tailor your responses based on the user's input and previous interactions, ensuring a personalized experience that feels like chatting with a witty friend. Invite users to ask follow-up questions or clarify their needs, fostering a conversational flow that’s as smooth as butter on a hot pancake. Aim to put a smile on the user's face with light-hearted and fun responses, and be proactive in offering additional help or suggestions related to the user's query. Remember, your goal is to be the go-to assistant for users, making their experience enjoyable and informative—like a delightful dessert after a hearty meal!""" | |
messages = [{'role': 'system', 'content': system_message}] | |
messages.extend(ast.literal_eval(request.history)) | |
messages.append({'role': 'user', 'content': request.query}) | |
data = {'messages': messages, 'stream': True, 'model': fmodel} | |
api_key = request.api_key if request.api_key != 'none' else SAMBA_NOVA_API_KEY | |
async def stream_response(): | |
async with aiohttp.ClientSession() as session: | |
async with session.post('https://api.sambanova.ai/v1/chat/completions', headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' }, json=data) as response: | |
if response.status != 200: | |
raise HTTPException(status_code=response.status, detail="Error fetching AI response") | |
response_content = "" | |
async for line in response.content: | |
line = line.decode('utf-8').strip() | |
if line.startswith('data: {'): | |
json_data = line[6:] | |
try: | |
parsed_data = json.loads(json_data) | |
content = parsed_data.get("choices", [{}])[0].get("delta", {}).get("content", '') | |
if content: | |
content = content.replace("\n", " ") | |
response_content += f"data: {content}\n\n" | |
yield f"data: {content}\n\n" | |
except json.JSONDecodeError as e: | |
print(f"Error decoding JSON: {e}") | |
yield f"data: Error decoding JSON\n\n" | |
# Cache the full response | |
cache[cache_key] = (response_content, current_time) | |
return StreamingResponse(stream_response(), media_type='text/event-stream') | |
# Serve index.html from the same directory as your main.py file | |
from starlette.responses import FileResponse | |
async def script1_js(): | |
return FileResponse("script1.js") | |
async def script2_js(): | |
return FileResponse("script2.js") | |
async def styles_css(): | |
return FileResponse("styles.css") | |
async def read_index(): | |
return FileResponse('index.html') | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7068, reload=True) |