import gradio as gr import spaces from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch from PIL import Image import subprocess from datetime import datetime import numpy as np import os # Install flash-attn subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Model and Processor Loading (Done once at startup) MODEL_ID = "Qwen/Qwen2-VL-7B-Instruct" model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval() processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co./Qwen/Qwen2-VL-7B-Instruct)" @spaces.GPU def qwen_inference(media_path, text_input=None): image_extensions = Image.registered_extensions() if media_path.endswith(tuple([i for i, f in image_extensions.items()])): media_type = "image" elif media_path.endswith(("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")): # Check if it's a video path media_type = "video" else: raise ValueError("Unsupported media type. Please upload an image or video.") messages = [ { "role": "user", "content": [ { "type": media_type, media_type: media_path, **({"fps": 8.0} if media_type == "video" else {}), }, {"type": "text", "text": text_input}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return output_text css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="Image/Video Input"): with gr.Row(): with gr.Column(): input_media = gr.File(label="Upload Image or Video", type="filepath") text_input = gr.Textbox(label="Question") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") submit_btn.click(qwen_inference, [input_media, text_input], [output_text]) demo.launch(debug=True)