Qwen2-VL-7B / app.py
KingNish's picture
Update app.py
e1a05a3 verified
raw
history blame
2.99 kB
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import subprocess
from datetime import datetime
import numpy as np
import os
# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Model and Processor Loading (Done once at startup)
MODEL_ID = "Qwen/Qwen2-VL-7B-Instruct"
model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval()
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
DESCRIPTION = "[Qwen2-VL-7B Demo](https://huggingface.co./Qwen/Qwen2-VL-7B-Instruct)"
@spaces.GPU
def qwen_inference(media_path, text_input=None):
image_extensions = Image.registered_extensions()
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
media_type = "image"
elif media_path.endswith(("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")): # Check if it's a video path
media_type = "video"
else:
raise ValueError("Unsupported media type. Please upload an image or video.")
messages = [
{
"role": "user",
"content": [
{
"type": media_type,
media_type: media_path,
**({"fps": 8.0} if media_type == "video" else {}),
},
{"type": "text", "text": text_input},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return output_text
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Image/Video Input"):
with gr.Row():
with gr.Column():
input_media = gr.File(label="Upload Image or Video", type="filepath")
text_input = gr.Textbox(label="Question")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
submit_btn.click(qwen_inference, [input_media, text_input], [output_text])
demo.launch(debug=True)