import json import subprocess import time from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download # Global variables to store the model and agent llm = None llm_model = None agent = None # Download the new model hf_hub_download( repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF", filename="llama-3.2-1b-instruct-q4_k_m.gguf", local_dir="./models" ) def get_messages_formatter_type(model_name): return MessagesFormatterType.LLAMA_3 def load_model(model_path): global llm global llm_model if llm is None or llm_model != model_path: llm = Llama( model_path=model_path, n_gpu_layers=0, # Adjust based on your GPU n_batch=32398, # Adjust based on your RAM n_ctx=512, # Adjust based on your RAM and desired context length ) llm_model = model_path return llm def load_agent(llm, system_message, chat_template): global agent if agent is None: provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=system_message, predefined_messages_formatter_type=chat_template, debug_output=True ) return agent def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): global llm global agent chat_template = get_messages_formatter_type(model) llm = load_model(f"models/{model}") agent = load_agent(llm, system_message, chat_template) settings = agent.provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) start_time = time.time() token_count = 0 stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output token_count += len(output.split()) yield outputs end_time = time.time() latency = end_time - start_time speed = token_count / (end_time - start_time) print(f"Latency: {latency} seconds") print(f"Speed: {speed} tokens/second") description = """