import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download llm = None llm_model = None # Download the new model hf_hub_download( repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF", filename="llama-3.2-1b-instruct-q4_k_m.gguf", local_dir="./models" ) def get_messages_formatter_type(model_name): return MessagesFormatterType.LLAMA_3 def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): global llm global llm_model chat_template = get_messages_formatter_type(model) if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", n_gpu_layers=0, n_batch=4096, n_ctx=2048, ) llm_model = model provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs description = """

[Meta Llama 3.2 (1B)] Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.

""" demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown([ "llama-3.2-1b-instruct-q4_k_m.gguf" ], value="llama-3.2-1b-instruct-q4_k_m.gguf", label="Model" ), gr.Textbox(value="You are a world-class AI system named Meta Llama 3.2 (1B). You are capable of complex reasoning, reflecting on your thoughts, and providing detailed and accurate responses. You are designed to excel in conversational dialogue, agentic retrieval, and summarization tasks. You can understand and generate text in multiple languages. Reason through the query inside tags, and then provide your final response inside tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside tags.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", ), gr.Slider( minimum=0, maximum=100, value=40, step=1, label="Top-k", ), gr.Slider( minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty", ), ], theme=gr.themes.Default( primary_hue="blue", secondary_hue="cyan", neutral_hue="gray", font=[gr.themes.GoogleFont("Roboto"), "ui-sans-serif", "system-ui", "sans-serif"] ).set( body_background_fill="#f8f9fa", block_background_fill="#ffffff", block_border_width="1px", block_title_background_fill="#e9ecef", input_background_fill="#f8f9fa", button_secondary_background_fill="#007bff", border_color_accent="#ced4da", border_color_primary="#ced4da", background_fill_secondary="#f8f9fa", color_accent_soft="#007bff", code_background_fill="#f8f9fa", ), title="Meta Llama 3.2 (1B)", description=description, chatbot=gr.Chatbot( scale=1, likeable=True, show_copy_button=True ), cache_examples=False, autofocus=False, concurrency_limit=10 ) if __name__ == "__main__": demo.launch()