import spaces import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download llm = None llm_model = None # Download the new model hf_hub_download( repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF", filename="llama-3.2-1b-instruct-q4_k_m.gguf", local_dir="./models" ) def get_messages_formatter_type(model_name): if "Llama" in model_name: return MessagesFormatterType.LLAMA_3 else: raise ValueError(f"Unsupported model: {model_name}") @spaces.GPU def respond( message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): global llm global llm_model chat_template = get_messages_formatter_type(model) if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=8192, ) llm_model = model provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs description = """

[Meta Llama 3.2 (1B)] Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.

""" demo = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown([ "llama-3.2-1b-instruct-q4_k_m.gguf" ], value="llama-3.2-1b-instruct-q4_k_m.gguf", label="Model" ), gr.Textbox(value="You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside tags, and then provide your final response inside tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside tags.", label="System message"), gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", ), gr.Slider( minimum=0, maximum=100, value=40, step=1, label="Top-k", ), gr.Slider( minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty", ), ], theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set( body_background_fill_dark="#16141c", block_background_fill_dark="#16141c", block_border_width="1px", block_title_background_fill_dark="#1e1c26", input_background_fill_dark="#292733", button_secondary_background_fill_dark="#24212b", border_color_accent_dark="#343140", border_color_primary_dark="#343140", background_fill_secondary_dark="#16141c", color_accent_soft_dark="transparent", code_background_fill_dark="#292733", ), retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", submit_btn="Send", title="Meta Llama 3.2 (1B)", description=description, chatbot=gr.Chatbot( scale=1, likeable=False, show_copy_button=True ) ) if __name__ == "__main__": demo.launch()