Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,10 @@ from llama_cpp_agent.chat_history.messages import Roles
|
|
9 |
import gradio as gr
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
|
|
12 |
llm = None
|
13 |
llm_model = None
|
|
|
14 |
|
15 |
# Download the new model
|
16 |
hf_hub_download(
|
@@ -22,6 +24,31 @@ hf_hub_download(
|
|
22 |
def get_messages_formatter_type(model_name):
|
23 |
return MessagesFormatterType.LLAMA_3
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def respond(
|
26 |
message,
|
27 |
history: list[tuple[str, str]],
|
@@ -34,29 +61,13 @@ def respond(
|
|
34 |
repeat_penalty,
|
35 |
):
|
36 |
global llm
|
37 |
-
global
|
38 |
-
|
39 |
chat_template = get_messages_formatter_type(model)
|
40 |
-
|
41 |
-
|
42 |
-
llm = Llama(
|
43 |
-
model_path=f"models/{model}",
|
44 |
-
n_gpu_layers=0, # Adjust based on your GPU
|
45 |
-
n_batch=32398, # Adjust based on your RAM
|
46 |
-
n_ctx=512, # Adjust based on your RAM and desired context length
|
47 |
-
)
|
48 |
-
llm_model = model
|
49 |
-
|
50 |
-
provider = LlamaCppPythonProvider(llm)
|
51 |
|
52 |
-
|
53 |
-
provider,
|
54 |
-
system_prompt=f"{system_message}",
|
55 |
-
predefined_messages_formatter_type=chat_template,
|
56 |
-
debug_output=True
|
57 |
-
)
|
58 |
-
|
59 |
-
settings = provider.get_provider_default_settings()
|
60 |
settings.temperature = temperature
|
61 |
settings.top_k = top_k
|
62 |
settings.top_p = top_p
|
@@ -118,30 +129,20 @@ demo = gr.ChatInterface(
|
|
118 |
value="llama-3.2-1b-instruct-q4_k_m.gguf",
|
119 |
label="Model"
|
120 |
),
|
121 |
-
gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta.
|
122 |
-
|
123 |
-
1. Complex reasoning and problem-solving
|
124 |
-
2. Multilingual understanding and generation
|
125 |
-
3. Creative and analytical writing
|
126 |
-
4. Code understanding and generation
|
127 |
-
5. Task decomposition and step-by-step guidance
|
128 |
-
6. Summarization and information extraction
|
129 |
-
|
130 |
-
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses:
|
131 |
-
""", label="System message"),
|
132 |
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max tokens"),
|
133 |
-
gr.Slider(minimum=0.1, maximum=
|
134 |
gr.Slider(
|
135 |
minimum=0.1,
|
136 |
maximum=2.0,
|
137 |
-
value=0.
|
138 |
step=0.05,
|
139 |
label="Top-p",
|
140 |
),
|
141 |
gr.Slider(
|
142 |
minimum=0,
|
143 |
maximum=100,
|
144 |
-
value=
|
145 |
step=1,
|
146 |
label="Top-k",
|
147 |
),
|
@@ -181,11 +182,11 @@ Always strive for accuracy, clarity, and helpfulness in your responses. If you'r
|
|
181 |
["Explain the difference between machine learning and deep learning."],
|
182 |
["Summarize the key points of climate change and its global impact."],
|
183 |
["Explain quantum computing to a 10-year-old."],
|
184 |
-
["Design a step-by-
|
185 |
],
|
186 |
cache_examples=False,
|
187 |
-
autofocus
|
188 |
-
concurrency_limit
|
189 |
)
|
190 |
|
191 |
if __name__ == "__main__":
|
|
|
9 |
import gradio as gr
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
+
# Global variables to store the model and agent
|
13 |
llm = None
|
14 |
llm_model = None
|
15 |
+
agent = None
|
16 |
|
17 |
# Download the new model
|
18 |
hf_hub_download(
|
|
|
24 |
def get_messages_formatter_type(model_name):
|
25 |
return MessagesFormatterType.LLAMA_3
|
26 |
|
27 |
+
def load_model(model_path):
|
28 |
+
global llm
|
29 |
+
global llm_model
|
30 |
+
if llm is None or llm_model != model_path:
|
31 |
+
llm = Llama(
|
32 |
+
model_path=model_path,
|
33 |
+
n_gpu_layers=0, # Adjust based on your GPU
|
34 |
+
n_batch=32398, # Adjust based on your RAM
|
35 |
+
n_ctx=512, # Adjust based on your RAM and desired context length
|
36 |
+
)
|
37 |
+
llm_model = model_path
|
38 |
+
return llm
|
39 |
+
|
40 |
+
def load_agent(llm, system_message, chat_template):
|
41 |
+
global agent
|
42 |
+
if agent is None:
|
43 |
+
provider = LlamaCppPythonProvider(llm)
|
44 |
+
agent = LlamaCppAgent(
|
45 |
+
provider,
|
46 |
+
system_prompt=system_message,
|
47 |
+
predefined_messages_formatter_type=chat_template,
|
48 |
+
debug_output=True
|
49 |
+
)
|
50 |
+
return agent
|
51 |
+
|
52 |
def respond(
|
53 |
message,
|
54 |
history: list[tuple[str, str]],
|
|
|
61 |
repeat_penalty,
|
62 |
):
|
63 |
global llm
|
64 |
+
global agent
|
65 |
+
|
66 |
chat_template = get_messages_formatter_type(model)
|
67 |
+
llm = load_model(f"models/{model}")
|
68 |
+
agent = load_agent(llm, system_message, chat_template)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
settings = agent.provider.get_provider_default_settings()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
settings.temperature = temperature
|
72 |
settings.top_k = top_k
|
73 |
settings.top_p = top_p
|
|
|
129 |
value="llama-3.2-1b-instruct-q4_k_m.gguf",
|
130 |
label="Model"
|
131 |
),
|
132 |
+
gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta.""", label="System message"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max tokens"),
|
134 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
135 |
gr.Slider(
|
136 |
minimum=0.1,
|
137 |
maximum=2.0,
|
138 |
+
value=0.9,
|
139 |
step=0.05,
|
140 |
label="Top-p",
|
141 |
),
|
142 |
gr.Slider(
|
143 |
minimum=0,
|
144 |
maximum=100,
|
145 |
+
value=1,
|
146 |
step=1,
|
147 |
label="Top-k",
|
148 |
),
|
|
|
182 |
["Explain the difference between machine learning and deep learning."],
|
183 |
["Summarize the key points of climate change and its global impact."],
|
184 |
["Explain quantum computing to a 10-year-old."],
|
185 |
+
["Design a step-by-Step Meal Plan for Weight Loss and Muscle Gain."],
|
186 |
],
|
187 |
cache_examples=False,
|
188 |
+
autofocus false,
|
189 |
+
concurrency_limit None
|
190 |
)
|
191 |
|
192 |
if __name__ == "__main__":
|