Khaldi Abderrahmane
commited on
Commit
·
ef38953
1
Parent(s):
4362255
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
from transformers import AutoTokenizer, AutoModel,AutoModelForSequenceClassification
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
num_classes = 6
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
#tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("KhaldiAbderrhmane/bert-emotion",trust_remote_code=True)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
model = AutoModelForSequenceClassification.from_pretrained("KhaldiAbderrhmane/bert-emotion",trust_remote_code=True)
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
def prediction_sentiment(review):
|
26 |
+
|
27 |
+
|
28 |
+
t= tokenizer(review, truncation=True, padding=True, max_length=128, return_tensors='pt')
|
29 |
+
inpt = t['input_ids']
|
30 |
+
mask = t['attention_mask']
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
outputs = model(inpt,mask)
|
36 |
+
|
37 |
+
|
38 |
+
outputs = outputs.logits
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
predicted= torch.max(outputs, 1).indices
|
43 |
+
|
44 |
+
if predicted == 0:
|
45 |
+
sentiment = "Sadness"
|
46 |
+
elif predicted == 1:
|
47 |
+
sentiment = "Joy"
|
48 |
+
elif predicted == 2:
|
49 |
+
sentiment = "Love"
|
50 |
+
elif predicted == 3:
|
51 |
+
sentiment = "Anger"
|
52 |
+
elif predicted == 4:
|
53 |
+
sentiment = "Fear"
|
54 |
+
else:
|
55 |
+
sentiment = "Surprise"
|
56 |
+
return sentiment
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
users = {"abdelmalek": [["this movie was so nice", "positive"], ["what the hell was that", "negative"], ["man this was good", "positive"]]}
|
63 |
+
columns = ["comment", "sentiment"]
|
64 |
+
user_name = st.text_input("User Name")
|
65 |
+
|
66 |
+
if user_name:
|
67 |
+
if user_name in users:
|
68 |
+
user_input = st.text_input("Enter your comment:")
|
69 |
+
|
70 |
+
|
71 |
+
if user_input:
|
72 |
+
|
73 |
+
sentiment = prediction_sentiment(user_input)
|
74 |
+
st.write('Your sentiment is:', sentiment)
|
75 |
+
users[user_name].append([user_input, sentiment])
|
76 |
+
else:
|
77 |
+
users[user_name] = []
|
78 |
+
st.write("Your user name has been added.")
|
79 |
+
user_input = st.text_input("Enter your comment:")
|
80 |
+
if user_input:
|
81 |
+
sentiment = prediction_sentiment(user_input)
|
82 |
+
st.write('Your sentiment is:', sentiment)
|
83 |
+
users[user_name].append([user_input, sentiment])
|
84 |
+
|
85 |
+
if st.button("Your comment:"):
|
86 |
+
if user_name in users:
|
87 |
+
df_t = pd.DataFrame(users[user_name], columns=columns)
|
88 |
+
card_css = """
|
89 |
+
<style>
|
90 |
+
.card {
|
91 |
+
background-color: #1A2E4D;
|
92 |
+
border-radius: 10px;
|
93 |
+
padding: 20px;
|
94 |
+
margin: 10px 0;
|
95 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
96 |
+
}
|
97 |
+
.card-title {
|
98 |
+
font-size: 24px;
|
99 |
+
font-weight: bold;
|
100 |
+
color: #F4F6FF;
|
101 |
+
}
|
102 |
+
.card-content {
|
103 |
+
font-size: 18px;
|
104 |
+
color: #52709E;
|
105 |
+
}
|
106 |
+
.sentiment-circle {
|
107 |
+
width: 15px; /* Adjust size as needed */
|
108 |
+
height: 15px; /* Adjust size as needed */
|
109 |
+
border-radius: 50%;
|
110 |
+
display: inline-block;
|
111 |
+
position: absolute;
|
112 |
+
top: 50%;
|
113 |
+
right: 0;
|
114 |
+
transform: translateY(-50%);
|
115 |
+
margin-right: 10px; /* Space between circle and text */
|
116 |
+
}
|
117 |
+
.positive {
|
118 |
+
|
119 |
+
background-color: #82D853; /* Green background for positive sentiment */
|
120 |
+
}
|
121 |
+
.negative {
|
122 |
+
|
123 |
+
background-color: #D85353; /* Red background for negative sentiment */
|
124 |
+
}
|
125 |
+
</style>
|
126 |
+
"""
|
127 |
+
st.markdown(card_css, unsafe_allow_html=True)
|
128 |
+
|
129 |
+
for comment, sentiment in df_t.values:
|
130 |
+
sentiment_class = "positive" if sentiment == "positive" else "negative"
|
131 |
+
sentiment_circle = f'<div class="sentiment-circle {sentiment_class}" style="background-color: {"#82D853" if sentiment == "positive" else "#D85353"};"></div>'
|
132 |
+
border_color = "border: 2px solid #82D853;" if sentiment == "positive" else "border: 2px solid #D85353;"
|
133 |
+
card_content = f"""
|
134 |
+
<div class="card" style="{border_color}">
|
135 |
+
<div class="card-title">{user_name}</div>
|
136 |
+
<div class="card-content">
|
137 |
+
{comment}
|
138 |
+
{sentiment_circle}
|
139 |
+
</div>
|
140 |
+
</div>
|
141 |
+
"""
|
142 |
+
st.markdown(card_content, unsafe_allow_html=True)
|
143 |
+
else:
|
144 |
+
st.error("No history available for this user.")
|