TheEeeeLin commited on
Commit
7173af9
·
1 Parent(s): b2cb163
demo/locals.py CHANGED
@@ -292,4 +292,20 @@ LOCALES = {
292
  "label": "抠图图像",
293
  },
294
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
  }
 
292
  "label": "抠图图像",
293
  },
294
  },
295
+ "beauty_tab": {
296
+ "en": {
297
+ "label": "Beauty",
298
+ },
299
+ "zh": {
300
+ "label": "美颜",
301
+ },
302
+ },
303
+ "whitening_strength": {
304
+ "en": {
305
+ "label": "whitening strength",
306
+ },
307
+ "zh": {
308
+ "label": "美白强度",
309
+ },
310
+ },
311
  }
demo/processor.py CHANGED
@@ -1,13 +1,13 @@
1
  import numpy as np
2
  from hivision import IDCreator
3
  from hivision.error import FaceError, APIError
4
- from hivision.utils import add_background, resize_image_to_kb
5
  from hivision.creator.layout_calculator import (
6
  generate_layout_photo,
7
  generate_layout_image,
8
  )
9
  from hivision.creator.choose_handler import choose_handler
10
- from demo.utils import add_watermark, range_check
11
  import gradio as gr
12
  import os
13
  import time
@@ -41,7 +41,7 @@ class IDPhotoProcessor:
41
  face_detect_option,
42
  head_measure_ratio=0.2,
43
  top_distance_max=0.12,
44
- top_distance_min=0.10,
45
  ):
46
  top_distance_min = top_distance_max - 0.02
47
 
@@ -70,6 +70,8 @@ class IDPhotoProcessor:
70
  return [
71
  gr.update(value=None), # img_output_standard
72
  gr.update(value=None), # img_output_standard_hd
 
 
73
  None, # img_output_layout (assuming it should be None or not updated)
74
  gr.update( # notification
75
  value=LOCALES["size_mode"][language]["custom_size_eror"],
@@ -113,6 +115,7 @@ class IDPhotoProcessor:
113
  idphoto_json["size_mode"] in LOCALES["size_mode"][language]["choices"][1]
114
  )
115
 
 
116
  try:
117
  result = creator(
118
  input_image,
@@ -120,11 +123,15 @@ class IDPhotoProcessor:
120
  size=idphoto_json["size"],
121
  head_measure_ratio=head_measure_ratio,
122
  head_top_range=(top_distance_max, top_distance_min),
 
123
  )
 
124
  except FaceError:
125
  return [
126
  gr.update(value=None), # img_output_standard
127
  gr.update(value=None), # img_output_standard_hd
 
 
128
  gr.update(visible=False), # img_output_layout
129
  gr.update( # notification
130
  value=LOCALES["notification"][language]["face_error"],
@@ -132,11 +139,12 @@ class IDPhotoProcessor:
132
  ),
133
  None, # file_download (assuming it should be None or have no update)
134
  ]
135
-
136
  except APIError as e:
137
  return [
138
  gr.update(value=None), # img_output_standard
139
  gr.update(value=None), # img_output_standard_hd
 
140
  gr.update(value=None), # img_output_standard_hd_png
141
  gr.update(visible=False), # img_output_layout
142
  gr.update( # notification
@@ -145,13 +153,14 @@ class IDPhotoProcessor:
145
  ),
146
  None, # file_download (assuming it should be None or have no update)
147
  ]
148
-
149
  else:
150
- (result_image_standard, result_image_hd, _, _) = result
151
 
152
  result_image_standard_png = np.uint8(result_image_standard)
153
  result_image_hd_png = np.uint8(result_image_hd)
154
 
 
155
  if (
156
  idphoto_json["render_mode"]
157
  == LOCALES["render_mode"][language]["choices"][0]
@@ -162,6 +171,7 @@ class IDPhotoProcessor:
162
  result_image_hd = np.uint8(
163
  add_background(result_image_hd, bgr=idphoto_json["color_bgr"])
164
  )
 
165
  elif (
166
  idphoto_json["render_mode"]
167
  == LOCALES["render_mode"][language]["choices"][1]
@@ -180,6 +190,7 @@ class IDPhotoProcessor:
180
  mode="updown_gradient",
181
  )
182
  )
 
183
  else:
184
  result_image_standard = np.uint8(
185
  add_background(
@@ -277,7 +288,7 @@ class IDPhotoProcessor:
277
  return [
278
  result_image_standard, # img_output_standard
279
  result_image_hd, # img_output_standard_hd
280
- result_image_standard_png, # img_output_standard_hd_png
281
  result_image_hd_png, # img_output_standard_hd_png
282
  result_layout_image, # img_output_layout
283
  gr.update(visible=False), # notification
@@ -287,7 +298,7 @@ class IDPhotoProcessor:
287
  return [
288
  result_image_standard, # img_output_standard
289
  result_image_hd, # img_output_standard_hd
290
- result_image_standard_png, # img_output_standard_hd_png
291
  result_image_hd_png, # img_output_standard_hd_png
292
  result_layout_image, # img_output_layout
293
  gr.update(visible=False), # notification
 
1
  import numpy as np
2
  from hivision import IDCreator
3
  from hivision.error import FaceError, APIError
4
+ from hivision.utils import add_background, resize_image_to_kb, add_watermark
5
  from hivision.creator.layout_calculator import (
6
  generate_layout_photo,
7
  generate_layout_image,
8
  )
9
  from hivision.creator.choose_handler import choose_handler
10
+ from demo.utils import range_check
11
  import gradio as gr
12
  import os
13
  import time
 
41
  face_detect_option,
42
  head_measure_ratio=0.2,
43
  top_distance_max=0.12,
44
+ whitening_strength=0,
45
  ):
46
  top_distance_min = top_distance_max - 0.02
47
 
 
70
  return [
71
  gr.update(value=None), # img_output_standard
72
  gr.update(value=None), # img_output_standard_hd
73
+ gr.update(value=None), # img_output_standard_png
74
+ gr.update(value=None), # img_output_standard_hd_png
75
  None, # img_output_layout (assuming it should be None or not updated)
76
  gr.update( # notification
77
  value=LOCALES["size_mode"][language]["custom_size_eror"],
 
115
  idphoto_json["size_mode"] in LOCALES["size_mode"][language]["choices"][1]
116
  )
117
 
118
+ # 生成证件照
119
  try:
120
  result = creator(
121
  input_image,
 
123
  size=idphoto_json["size"],
124
  head_measure_ratio=head_measure_ratio,
125
  head_top_range=(top_distance_max, top_distance_min),
126
+ whitening_strength=whitening_strength,
127
  )
128
+ # 如果检测到人脸数量不等于1
129
  except FaceError:
130
  return [
131
  gr.update(value=None), # img_output_standard
132
  gr.update(value=None), # img_output_standard_hd
133
+ gr.update(value=None), # img_output_standard_png
134
+ gr.update(value=None), # img_output_standard_hd_png
135
  gr.update(visible=False), # img_output_layout
136
  gr.update( # notification
137
  value=LOCALES["notification"][language]["face_error"],
 
139
  ),
140
  None, # file_download (assuming it should be None or have no update)
141
  ]
142
+ # 如果 API 错误
143
  except APIError as e:
144
  return [
145
  gr.update(value=None), # img_output_standard
146
  gr.update(value=None), # img_output_standard_hd
147
+ gr.update(value=None), # img_output_standard_png
148
  gr.update(value=None), # img_output_standard_hd_png
149
  gr.update(visible=False), # img_output_layout
150
  gr.update( # notification
 
153
  ),
154
  None, # file_download (assuming it should be None or have no update)
155
  ]
156
+ # 证件照生成正常
157
  else:
158
+ (result_image_standard, result_image_hd, _, _, _, _) = result
159
 
160
  result_image_standard_png = np.uint8(result_image_standard)
161
  result_image_hd_png = np.uint8(result_image_hd)
162
 
163
+ # 纯色渲染
164
  if (
165
  idphoto_json["render_mode"]
166
  == LOCALES["render_mode"][language]["choices"][0]
 
171
  result_image_hd = np.uint8(
172
  add_background(result_image_hd, bgr=idphoto_json["color_bgr"])
173
  )
174
+ # 上下渐变渲染
175
  elif (
176
  idphoto_json["render_mode"]
177
  == LOCALES["render_mode"][language]["choices"][1]
 
190
  mode="updown_gradient",
191
  )
192
  )
193
+ # 中心渐变渲染
194
  else:
195
  result_image_standard = np.uint8(
196
  add_background(
 
288
  return [
289
  result_image_standard, # img_output_standard
290
  result_image_hd, # img_output_standard_hd
291
+ result_image_standard_png, # img_output_standard_png
292
  result_image_hd_png, # img_output_standard_hd_png
293
  result_layout_image, # img_output_layout
294
  gr.update(visible=False), # notification
 
298
  return [
299
  result_image_standard, # img_output_standard
300
  result_image_hd, # img_output_standard_hd
301
+ result_image_standard_png, # img_output_standard_png
302
  result_image_hd_png, # img_output_standard_hd_png
303
  result_layout_image, # img_output_layout
304
  gr.update(visible=False), # notification
demo/ui.py CHANGED
@@ -2,7 +2,12 @@ import gradio as gr
2
  import os
3
  import pathlib
4
  from demo.locals import LOCALES
5
- from hivision.creator.choose_handler import FACE_DETECT_MODELS
 
 
 
 
 
6
 
7
 
8
  def load_description(fp):
@@ -12,7 +17,10 @@ def load_description(fp):
12
 
13
 
14
  def create_ui(
15
- processor, root_dir, human_matting_models: list, face_detect_models: list
 
 
 
16
  ):
17
  DEFAULT_LANG = "zh"
18
  DEFAULT_HUMAN_MATTING_MODEL = "modnet_photographic_portrait_matting"
@@ -55,6 +63,7 @@ def create_ui(
55
  value=human_matting_models[0],
56
  )
57
 
 
58
  with gr.Tab(
59
  LOCALES["key_param"][DEFAULT_LANG]["label"]
60
  ) as key_parameter_tab:
@@ -97,6 +106,7 @@ def create_ui(
97
  value=LOCALES["render_mode"][DEFAULT_LANG]["choices"][0],
98
  )
99
 
 
100
  with gr.Tab(
101
  LOCALES["advance_param"][DEFAULT_LANG]["label"]
102
  ) as advance_parameter_tab:
@@ -132,6 +142,20 @@ def create_ui(
132
  interactive=True,
133
  )
134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  with gr.Tab(
136
  LOCALES["watermark_tab"][DEFAULT_LANG]["label"]
137
  ) as watermark_parameter_tab:
@@ -379,6 +403,12 @@ def create_ui(
379
  matting_image_accordion: gr.update(
380
  label=LOCALES["matting_image"][language]["label"]
381
  ),
 
 
 
 
 
 
382
  }
383
 
384
  def change_color(colors):
@@ -417,6 +447,7 @@ def create_ui(
417
  return {custom_image_kb: gr.update(visible=False)}
418
 
419
  # ---------------- 绑定事件 ----------------
 
420
  language_options.input(
421
  change_language,
422
  inputs=[language_options],
@@ -450,6 +481,8 @@ def create_ui(
450
  watermark_text_space,
451
  watermark_options,
452
  matting_image_accordion,
 
 
453
  ],
454
  )
455
 
@@ -494,6 +527,7 @@ def create_ui(
494
  face_detect_model_options,
495
  head_measure_ratio_option,
496
  top_distance_option,
 
497
  ],
498
  outputs=[
499
  img_output_standard,
 
2
  import os
3
  import pathlib
4
  from demo.locals import LOCALES
5
+ from demo.processor import IDPhotoProcessor
6
+
7
+ """
8
+ 只裁切模式:
9
+ 1. 如果重新上传了照片,然后点击按钮,第一次会调用不裁切的模式,第二次会调用裁切的模式
10
+ """
11
 
12
 
13
  def load_description(fp):
 
17
 
18
 
19
  def create_ui(
20
+ processor: IDPhotoProcessor,
21
+ root_dir: str,
22
+ human_matting_models: list,
23
+ face_detect_models: list,
24
  ):
25
  DEFAULT_LANG = "zh"
26
  DEFAULT_HUMAN_MATTING_MODEL = "modnet_photographic_portrait_matting"
 
63
  value=human_matting_models[0],
64
  )
65
 
66
+ # TAB1 - 关键参数
67
  with gr.Tab(
68
  LOCALES["key_param"][DEFAULT_LANG]["label"]
69
  ) as key_parameter_tab:
 
106
  value=LOCALES["render_mode"][DEFAULT_LANG]["choices"][0],
107
  )
108
 
109
+ # TAB2 - 高级参数
110
  with gr.Tab(
111
  LOCALES["advance_param"][DEFAULT_LANG]["label"]
112
  ) as advance_parameter_tab:
 
142
  interactive=True,
143
  )
144
 
145
+ # TAB3 - 美颜
146
+ with gr.Tab(
147
+ LOCALES["beauty_tab"][DEFAULT_LANG]["label"]
148
+ ) as beauty_parameter_tab:
149
+ whitening_option = gr.Slider(
150
+ label=LOCALES["whitening_strength"][DEFAULT_LANG]["label"],
151
+ minimum=0,
152
+ maximum=10,
153
+ value=2,
154
+ step=1,
155
+ interactive=True,
156
+ )
157
+
158
+ # TAB4 - 水印
159
  with gr.Tab(
160
  LOCALES["watermark_tab"][DEFAULT_LANG]["label"]
161
  ) as watermark_parameter_tab:
 
403
  matting_image_accordion: gr.update(
404
  label=LOCALES["matting_image"][language]["label"]
405
  ),
406
+ beauty_parameter_tab: gr.update(
407
+ label=LOCALES["beauty_tab"][language]["label"]
408
+ ),
409
+ whitening_option: gr.update(
410
+ label=LOCALES["whitening_strength"][language]["label"]
411
+ ),
412
  }
413
 
414
  def change_color(colors):
 
447
  return {custom_image_kb: gr.update(visible=False)}
448
 
449
  # ---------------- 绑定事件 ----------------
450
+ # 语言切换
451
  language_options.input(
452
  change_language,
453
  inputs=[language_options],
 
481
  watermark_text_space,
482
  watermark_options,
483
  matting_image_accordion,
484
+ beauty_parameter_tab,
485
+ whitening_option,
486
  ],
487
  )
488
 
 
527
  face_detect_model_options,
528
  head_measure_ratio_option,
529
  top_distance_option,
530
+ whitening_option,
531
  ],
532
  outputs=[
533
  img_output_standard,
demo/utils.py CHANGED
@@ -42,20 +42,3 @@ def csv_to_color_list(csv_file: str) -> dict:
42
  def range_check(value, min_value=0, max_value=255):
43
  value = int(value)
44
  return max(min_value, min(value, max_value))
45
-
46
-
47
- def add_watermark(
48
- image, text, size=50, opacity=0.5, angle=45, color="#8B8B1B", space=75
49
- ):
50
- image = Image.fromarray(image)
51
- watermarker = Watermarker(
52
- input_image=image,
53
- text=text,
54
- style=WatermarkerStyles.STRIPED,
55
- angle=angle,
56
- color=color,
57
- opacity=opacity,
58
- size=size,
59
- space=space,
60
- )
61
- return np.array(watermarker.image.convert("RGB"))
 
42
  def range_check(value, min_value=0, max_value=255):
43
  value = int(value)
44
  return max(min_value, min(value, max_value))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hivision/creator/__init__.py CHANGED
@@ -12,7 +12,8 @@ from typing import Tuple
12
  import hivision.creator.utils as U
13
  from .context import Context, ContextHandler, Params, Result
14
  from .human_matting import extract_human
15
- from .face_detector import detect_face_mtcnn, detect_face_face_plusplus
 
16
  from .photo_adjuster import adjust_photo
17
 
18
 
@@ -51,18 +52,24 @@ class IDCreator:
51
  image: np.ndarray,
52
  size: Tuple[int, int] = (413, 295),
53
  change_bg_only: bool = False,
 
54
  head_measure_ratio: float = 0.2,
55
  head_height_ratio: float = 0.45,
56
  head_top_range: float = (0.12, 0.1),
 
 
57
  ) -> Result:
58
  """
59
  证件照处理函数
60
  :param image: 输入图像
61
- :param change_bg_only: 是否只需要换底
 
62
  :param size: 输出的图像大小(h,w)
63
  :param head_measure_ratio: 人脸面积与全图面积的期望比值
64
  :param head_height_ratio: 人脸中心处在全图高度的比例期望值
65
  :param head_top_range: 头距离顶部的比例(max,min)
 
 
66
 
67
  :return: 返回处理后的证件照和一系列参数
68
  """
@@ -73,6 +80,9 @@ class IDCreator:
73
  head_measure_ratio=head_measure_ratio,
74
  head_height_ratio=head_height_ratio,
75
  head_top_range=head_top_range,
 
 
 
76
  )
77
  self.ctx = Context(params)
78
  ctx = self.ctx
@@ -82,30 +92,51 @@ class IDCreator:
82
  ) # 将输入图片 resize 到最大边长为 2000
83
  ctx.origin_image = ctx.processing_image.copy()
84
  self.before_all and self.before_all(ctx)
 
 
 
 
 
 
 
85
  # 1. 人像抠图
86
- self.matting_handler(ctx)
87
- self.after_matting and self.after_matting(ctx)
 
 
 
 
 
 
88
  if ctx.params.change_bg_only:
89
  ctx.result = Result(
90
  standard=ctx.matting_image,
91
  hd=ctx.matting_image,
 
92
  clothing_params=None,
93
  typography_params=None,
 
94
  )
95
  self.after_all and self.after_all(ctx)
96
  return ctx.result
 
97
  # 2. 人脸检测
98
  self.detection_handler(ctx)
99
  self.after_detect and self.after_detect(ctx)
 
100
  # 3. 图像调整
101
  result_image_hd, result_image_standard, clothing_params, typography_params = (
102
  adjust_photo(ctx)
103
  )
 
 
104
  ctx.result = Result(
105
  standard=result_image_standard,
106
  hd=result_image_hd,
 
107
  clothing_params=clothing_params,
108
  typography_params=typography_params,
 
109
  )
110
  self.after_all and self.after_all(ctx)
111
  return ctx.result
 
12
  import hivision.creator.utils as U
13
  from .context import Context, ContextHandler, Params, Result
14
  from .human_matting import extract_human
15
+ from .face_detector import detect_face_mtcnn
16
+ from hivision.plugin.beauty.whitening import make_whitening
17
  from .photo_adjuster import adjust_photo
18
 
19
 
 
52
  image: np.ndarray,
53
  size: Tuple[int, int] = (413, 295),
54
  change_bg_only: bool = False,
55
+ crop_only: bool = False,
56
  head_measure_ratio: float = 0.2,
57
  head_height_ratio: float = 0.45,
58
  head_top_range: float = (0.12, 0.1),
59
+ face: Tuple[int, int, int, int] = None,
60
+ whitening_strength: int = 0,
61
  ) -> Result:
62
  """
63
  证件照处理函数
64
  :param image: 输入图像
65
+ :param change_bg_only: 是否只需要抠图
66
+ :param crop_only: 是否只需要裁剪
67
  :param size: 输出的图像大小(h,w)
68
  :param head_measure_ratio: 人脸面积与全图面积的期望比值
69
  :param head_height_ratio: 人脸中心处在全图高度的比例期望值
70
  :param head_top_range: 头距离顶部的比例(max,min)
71
+ :param face: 人脸坐标
72
+ :param whitening_strength: 美白强度
73
 
74
  :return: 返回处理后的证件照和一系列参数
75
  """
 
80
  head_measure_ratio=head_measure_ratio,
81
  head_height_ratio=head_height_ratio,
82
  head_top_range=head_top_range,
83
+ crop_only=crop_only,
84
+ face=face,
85
+ whitening_strength=whitening_strength,
86
  )
87
  self.ctx = Context(params)
88
  ctx = self.ctx
 
92
  ) # 将输入图片 resize 到最大边长为 2000
93
  ctx.origin_image = ctx.processing_image.copy()
94
  self.before_all and self.before_all(ctx)
95
+
96
+ # 美白
97
+ if ctx.params.whitening_strength > 0:
98
+ ctx.processing_image = make_whitening(
99
+ ctx.processing_image, ctx.params.whitening_strength
100
+ )
101
+
102
  # 1. 人像抠图
103
+ if not ctx.params.crop_only:
104
+ # 调用抠图工作流
105
+ self.matting_handler(ctx)
106
+ self.after_matting and self.after_matting(ctx)
107
+ else:
108
+ ctx.matting_image = ctx.processing_image
109
+
110
+ # 如果仅换底,则直接返回抠图结果
111
  if ctx.params.change_bg_only:
112
  ctx.result = Result(
113
  standard=ctx.matting_image,
114
  hd=ctx.matting_image,
115
+ matting=ctx.matting_image,
116
  clothing_params=None,
117
  typography_params=None,
118
+ face=None,
119
  )
120
  self.after_all and self.after_all(ctx)
121
  return ctx.result
122
+
123
  # 2. 人脸检测
124
  self.detection_handler(ctx)
125
  self.after_detect and self.after_detect(ctx)
126
+
127
  # 3. 图像调整
128
  result_image_hd, result_image_standard, clothing_params, typography_params = (
129
  adjust_photo(ctx)
130
  )
131
+
132
+ # 4. 返回结果
133
  ctx.result = Result(
134
  standard=result_image_standard,
135
  hd=result_image_hd,
136
+ matting=ctx.matting_image,
137
  clothing_params=clothing_params,
138
  typography_params=typography_params,
139
+ face=ctx.face,
140
  )
141
  self.after_all and self.after_all(ctx)
142
  return ctx.result
hivision/creator/context.py CHANGED
@@ -16,15 +16,21 @@ class Params:
16
  self,
17
  size: Tuple[int, int] = (413, 295),
18
  change_bg_only: bool = False,
 
19
  head_measure_ratio: float = 0.2,
20
  head_height_ratio: float = 0.45,
21
  head_top_range: float = (0.12, 0.1),
 
 
22
  ):
23
  self.__size = size
24
  self.__change_bg_only = change_bg_only
 
25
  self.__head_measure_ratio = head_measure_ratio
26
  self.__head_height_ratio = head_height_ratio
27
  self.__head_top_range = head_top_range
 
 
28
 
29
  @property
30
  def size(self):
@@ -46,17 +52,32 @@ class Params:
46
  def head_top_range(self):
47
  return self.__head_top_range
48
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  class Result:
51
  def __init__(
52
  self,
53
  standard: np.ndarray,
54
  hd: np.ndarray,
 
55
  clothing_params: Optional[dict],
56
  typography_params: Optional[dict],
 
57
  ):
58
  self.standard = standard
59
  self.hd = hd
 
60
  self.clothing_params = clothing_params
61
  """
62
  服装参数,仅换底时为 None
@@ -65,10 +86,18 @@ class Result:
65
  """
66
  排版参数,仅换底时为 None
67
  """
 
68
 
69
  def __iter__(self):
70
  return iter(
71
- [self.standard, self.hd, self.clothing_params, self.typography_params]
 
 
 
 
 
 
 
72
  )
73
 
74
 
 
16
  self,
17
  size: Tuple[int, int] = (413, 295),
18
  change_bg_only: bool = False,
19
+ crop_only: bool = False,
20
  head_measure_ratio: float = 0.2,
21
  head_height_ratio: float = 0.45,
22
  head_top_range: float = (0.12, 0.1),
23
+ face: Tuple[int, int, int, int] = None,
24
+ whitening_strength: int = 0,
25
  ):
26
  self.__size = size
27
  self.__change_bg_only = change_bg_only
28
+ self.__crop_only = crop_only
29
  self.__head_measure_ratio = head_measure_ratio
30
  self.__head_height_ratio = head_height_ratio
31
  self.__head_top_range = head_top_range
32
+ self.__face = face
33
+ self.__whitening_strength = whitening_strength
34
 
35
  @property
36
  def size(self):
 
52
  def head_top_range(self):
53
  return self.__head_top_range
54
 
55
+ @property
56
+ def crop_only(self):
57
+ return self.__crop_only
58
+
59
+ @property
60
+ def face(self):
61
+ return self.__face
62
+
63
+ @property
64
+ def whitening_strength(self):
65
+ return self.__whitening_strength
66
+
67
 
68
  class Result:
69
  def __init__(
70
  self,
71
  standard: np.ndarray,
72
  hd: np.ndarray,
73
+ matting: np.ndarray,
74
  clothing_params: Optional[dict],
75
  typography_params: Optional[dict],
76
+ face: Optional[Tuple[int, int, int, int, float]],
77
  ):
78
  self.standard = standard
79
  self.hd = hd
80
+ self.matting = matting
81
  self.clothing_params = clothing_params
82
  """
83
  服装参数,仅换底时为 None
 
86
  """
87
  排版参数,仅换底时为 None
88
  """
89
+ self.face = face
90
 
91
  def __iter__(self):
92
  return iter(
93
+ [
94
+ self.standard,
95
+ self.hd,
96
+ self.matting,
97
+ self.clothing_params,
98
+ self.typography_params,
99
+ self.face,
100
+ ]
101
  )
102
 
103
 
hivision/creator/retinaface/inference.py CHANGED
@@ -1,6 +1,6 @@
1
  import numpy as np
2
  import cv2
3
- import onnxruntime as ort
4
  from hivision.creator.retinaface.box_utils import decode, decode_landm
5
  from hivision.creator.retinaface.prior_box import PriorBox
6
 
@@ -46,10 +46,39 @@ keep_top_k = 750
46
  save_image = True
47
  vis_thres = 0.6
48
 
 
 
 
 
 
49
 
50
- def load_model_ort(model_path):
51
- ort_session = ort.InferenceSession(model_path)
52
- return ort_session
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
 
55
  def retinaface_detect_faces(image, model_path: str, sess=None):
@@ -75,7 +104,7 @@ def retinaface_detect_faces(image, model_path: str, sess=None):
75
 
76
  # Load ONNX model
77
  if sess is None:
78
- retinaface = load_model_ort(model_path)
79
  else:
80
  retinaface = sess
81
 
 
1
  import numpy as np
2
  import cv2
3
+ import onnxruntime
4
  from hivision.creator.retinaface.box_utils import decode, decode_landm
5
  from hivision.creator.retinaface.prior_box import PriorBox
6
 
 
46
  save_image = True
47
  vis_thres = 0.6
48
 
49
+ ONNX_DEVICE = (
50
+ "CUDAExecutionProvider"
51
+ if onnxruntime.get_device() == "GPU"
52
+ else "CPUExecutionProvider"
53
+ )
54
 
55
+
56
+ def load_onnx_model(checkpoint_path, set_cpu=False):
57
+ providers = (
58
+ ["CUDAExecutionProvider", "CPUExecutionProvider"]
59
+ if ONNX_DEVICE == "CUDAExecutionProvider"
60
+ else ["CPUExecutionProvider"]
61
+ )
62
+
63
+ if set_cpu:
64
+ sess = onnxruntime.InferenceSession(
65
+ checkpoint_path, providers=["CPUExecutionProvider"]
66
+ )
67
+ else:
68
+ try:
69
+ sess = onnxruntime.InferenceSession(checkpoint_path, providers=providers)
70
+ except Exception as e:
71
+ if ONNX_DEVICE == "CUDAExecutionProvider":
72
+ print(f"Failed to load model with CUDAExecutionProvider: {e}")
73
+ print("Falling back to CPUExecutionProvider")
74
+ # 尝试使用CPU加载模型
75
+ sess = onnxruntime.InferenceSession(
76
+ checkpoint_path, providers=["CPUExecutionProvider"]
77
+ )
78
+ else:
79
+ raise e # 如果是CPU执行失败,重新抛出异常
80
+
81
+ return sess
82
 
83
 
84
  def retinaface_detect_faces(image, model_path: str, sess=None):
 
104
 
105
  # Load ONNX model
106
  if sess is None:
107
+ retinaface = load_onnx_model(model_path, set_cpu=False)
108
  else:
109
  retinaface = sess
110
 
hivision/plugin/beauty/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .beauty_tools import BeautyTools
hivision/plugin/beauty/beauty_tools.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ @author: cuny
3
+ @file: MakeBeautiful.py
4
+ @time: 2022/7/7 20:23
5
+ @description:
6
+ 美颜工具集合文件,作为暴露在外的插件接口
7
+ """
8
+
9
+ from .grind_skin import grindSkin
10
+ from .whitening import MakeWhiter
11
+ from .thin_face import thinFace
12
+ import numpy as np
13
+
14
+
15
+ def BeautyTools(
16
+ input_image: np.ndarray,
17
+ landmark,
18
+ thinStrength: int,
19
+ thinPlace: int,
20
+ grindStrength: int,
21
+ whiterStrength: int,
22
+ ) -> np.ndarray:
23
+ """
24
+ 美颜工具的接口函数,用于实现美颜效果
25
+ Args:
26
+ input_image: 输入的图像
27
+ landmark: 瘦脸需要的人脸关键点信息,为fd68返回的第二个参数
28
+ thinStrength: 瘦脸强度,为0-10(如果更高其实也没什么问题),当强度为0或者更低时,则不瘦脸
29
+ thinPlace: 选择瘦脸区域,为0-2之间的值,越大瘦脸的点越靠下
30
+ grindStrength: 磨皮强度,为0-10(如果更高其实也没什么问题),当强度为0或者更低时,则不磨皮
31
+ whiterStrength: 美白强度,为0-10(如果更高其实也没什么问题),当强度为0或者更低时,则不美白
32
+ Returns:
33
+ output_image 输出图像
34
+ """
35
+ try:
36
+ _, _, _ = input_image.shape
37
+ except ValueError:
38
+ raise TypeError("输入图像必须为3通道或者4通道!")
39
+ # 三通道或者四通道图像
40
+ # 首先进行瘦脸
41
+ input_image = thinFace(
42
+ input_image, landmark, place=thinPlace, strength=thinStrength
43
+ )
44
+ # 其次进行磨皮
45
+ input_image = grindSkin(src=input_image, strength=grindStrength)
46
+ # 最后进行美白
47
+ makeWhiter = MakeWhiter()
48
+ input_image = makeWhiter.run(input_image, strength=whiterStrength)
49
+ return input_image
hivision/plugin/beauty/grind_skin.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ @author: cuny
3
+ @file: GrindSkin.py
4
+ @time: 2022/7/2 14:44
5
+ @description:
6
+ 磨皮算法
7
+ """
8
+
9
+ import cv2
10
+ import numpy as np
11
+
12
+
13
+ def grindSkin(src, grindDegree: int = 3, detailDegree: int = 1, strength: int = 9):
14
+ """
15
+ Dest =(Src * (100 - Opacity) + (Src + 2 * GaussBlur(EPFFilter(Src) - Src)) * Opacity) /100
16
+ 人像磨皮方案,后续会考虑使用一些皮肤区域检测算法来实现仅皮肤区域磨皮,增加算法的精细程度——或者使用人脸关键点
17
+ https://www.cnblogs.com/Imageshop/p/4709710.html
18
+ Args:
19
+ src: 原图
20
+ grindDegree: 磨皮程度调节参数
21
+ detailDegree: 细节程度调节参数
22
+ strength: 融合程度,作为磨皮强度(0 - 10)
23
+
24
+ Returns:
25
+ 磨皮后的图像
26
+ """
27
+ if strength <= 0:
28
+ return src
29
+ dst = src.copy()
30
+ opacity = min(10.0, strength) / 10.0
31
+ dx = grindDegree * 5 # 双边滤波参数之一
32
+ fc = grindDegree * 12.5 # 双边滤波参数之一
33
+ temp1 = cv2.bilateralFilter(src[:, :, :3], dx, fc, fc)
34
+ temp2 = cv2.subtract(temp1, src[:, :, :3])
35
+ temp3 = cv2.GaussianBlur(temp2, (2 * detailDegree - 1, 2 * detailDegree - 1), 0)
36
+ temp4 = cv2.add(cv2.add(temp3, temp3), src[:, :, :3])
37
+ dst[:, :, :3] = cv2.addWeighted(temp4, opacity, src[:, :, :3], 1 - opacity, 0.0)
38
+ return dst
39
+
40
+
41
+ if __name__ == "__main__":
42
+ input_image = cv2.imread("test_image/7.jpg")
43
+ output_image = grindSkin(src=input_image)
44
+ cv2.imwrite("grindSkinCompare.png", np.hstack((input_image, output_image)))
hivision/plugin/beauty/lut/lut_origin.png ADDED
hivision/plugin/beauty/thin_face.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ @author: cuny
3
+ @file: ThinFace.py
4
+ @time: 2022/7/2 15:50
5
+ @description:
6
+ 瘦脸算法,用到了图像局部平移法
7
+ 先使用人脸关键点检测,然后再使用图像局部平移法
8
+ 需要注意的是,这部分不会包含dlib人脸关键点检测,因为考虑到模型载入的问题
9
+ """
10
+
11
+ import cv2
12
+ import math
13
+ import numpy as np
14
+
15
+
16
+ class TranslationWarp(object):
17
+ """
18
+ 本类包含瘦脸算法,由于瘦脸算法包含了很多个版本,所以以类的方式呈现
19
+ 前两个算法没什么好讲的,网上资料很多
20
+ 第三个采用numpy内部的自定义函数处理,在处理速度上有一些提升
21
+ 最后采用cv2.map算法,处理速度大幅度提升
22
+ """
23
+
24
+ # 瘦脸
25
+ @staticmethod
26
+ def localTranslationWarp(srcImg, startX, startY, endX, endY, radius):
27
+ # 双线性插值法
28
+ def BilinearInsert(src, ux, uy):
29
+ w, h, c = src.shape
30
+ if c == 3:
31
+ x1 = int(ux)
32
+ x2 = x1 + 1
33
+ y1 = int(uy)
34
+ y2 = y1 + 1
35
+ part1 = (
36
+ src[y1, x1].astype(np.float64) * (float(x2) - ux) * (float(y2) - uy)
37
+ )
38
+ part2 = (
39
+ src[y1, x2].astype(np.float64) * (ux - float(x1)) * (float(y2) - uy)
40
+ )
41
+ part3 = (
42
+ src[y2, x1].astype(np.float64) * (float(x2) - ux) * (uy - float(y1))
43
+ )
44
+ part4 = (
45
+ src[y2, x2].astype(np.float64) * (ux - float(x1)) * (uy - float(y1))
46
+ )
47
+ insertValue = part1 + part2 + part3 + part4
48
+ return insertValue.astype(np.int8)
49
+
50
+ ddradius = float(radius * radius) # 圆的半径
51
+ copyImg = srcImg.copy() # copy后的图像矩阵
52
+ # 计算公式中的|m-c|^2
53
+ ddmc = (endX - startX) * (endX - startX) + (endY - startY) * (endY - startY)
54
+ H, W, C = srcImg.shape # 获取图像的形状
55
+ for i in range(W):
56
+ for j in range(H):
57
+ # # 计算该点是否在形变圆的范围之内
58
+ # # 优化,第一步,直接判断是会在(startX,startY)的矩阵框中
59
+ if math.fabs(i - startX) > radius and math.fabs(j - startY) > radius:
60
+ continue
61
+ distance = (i - startX) * (i - startX) + (j - startY) * (j - startY)
62
+ if distance < ddradius:
63
+ # 计算出(i,j)坐标的原坐标
64
+ # 计算公式中右边平方号里的部分
65
+ ratio = (ddradius - distance) / (ddradius - distance + ddmc)
66
+ ratio = ratio * ratio
67
+ # 映射原位置
68
+ UX = i - ratio * (endX - startX)
69
+ UY = j - ratio * (endY - startY)
70
+
71
+ # 根据双线性插值法得到UX,UY的值
72
+ # start_ = time.time()
73
+ value = BilinearInsert(srcImg, UX, UY)
74
+ # print(f"双线性插值耗时;{time.time() - start_}")
75
+ # 改变当前 i ,j的值
76
+ copyImg[j, i] = value
77
+ return copyImg
78
+
79
+ # 瘦脸pro1, 限制了for循环的遍历次数
80
+ @staticmethod
81
+ def localTranslationWarpLimitFor(
82
+ srcImg, startP: np.matrix, endP: np.matrix, radius: float
83
+ ):
84
+ startX, startY = startP[0, 0], startP[0, 1]
85
+ endX, endY = endP[0, 0], endP[0, 1]
86
+
87
+ # 双线性插值法
88
+ def BilinearInsert(src, ux, uy):
89
+ w, h, c = src.shape
90
+ if c == 3:
91
+ x1 = int(ux)
92
+ x2 = x1 + 1
93
+ y1 = int(uy)
94
+ y2 = y1 + 1
95
+ part1 = (
96
+ src[y1, x1].astype(np.float64) * (float(x2) - ux) * (float(y2) - uy)
97
+ )
98
+ part2 = (
99
+ src[y1, x2].astype(np.float64) * (ux - float(x1)) * (float(y2) - uy)
100
+ )
101
+ part3 = (
102
+ src[y2, x1].astype(np.float64) * (float(x2) - ux) * (uy - float(y1))
103
+ )
104
+ part4 = (
105
+ src[y2, x2].astype(np.float64) * (ux - float(x1)) * (uy - float(y1))
106
+ )
107
+ insertValue = part1 + part2 + part3 + part4
108
+ return insertValue.astype(np.int8)
109
+
110
+ ddradius = float(radius * radius) # 圆的半径
111
+ copyImg = srcImg.copy() # copy后的图像矩阵
112
+ # 计算公式中的|m-c|^2
113
+ ddmc = (endX - startX) ** 2 + (endY - startY) ** 2
114
+ # 计算正方形的左上角起始点
115
+ startTX, startTY = (
116
+ startX - math.floor(radius + 1),
117
+ startY - math.floor((radius + 1)),
118
+ )
119
+ # 计算正方形的右下角的结束点
120
+ endTX, endTY = (
121
+ startX + math.floor(radius + 1),
122
+ startY + math.floor((radius + 1)),
123
+ )
124
+ # 剪切srcImg
125
+ srcImg = srcImg[startTY : endTY + 1, startTX : endTX + 1, :]
126
+ # db.cv_show(srcImg)
127
+ # 裁剪后的图像相当于在x,y都减少了startX - math.floor(radius + 1)
128
+ # 原本的endX, endY在切后的坐标点
129
+ endX, endY = (
130
+ endX - startX + math.floor(radius + 1),
131
+ endY - startY + math.floor(radius + 1),
132
+ )
133
+ # 原本的startX, startY剪切后的坐标点
134
+ startX, startY = (math.floor(radius + 1), math.floor(radius + 1))
135
+ H, W, C = srcImg.shape # 获取图像的形状
136
+ for i in range(W):
137
+ for j in range(H):
138
+ # 计算该点是否在形变圆的范围之内
139
+ # 优化,第一步,直接判断是会在(startX,startY)的矩阵框中
140
+ # if math.fabs(i - startX) > radius and math.fabs(j - startY) > radius:
141
+ # continue
142
+ distance = (i - startX) * (i - startX) + (j - startY) * (j - startY)
143
+ if distance < ddradius:
144
+ # 计算出(i,j)坐标的原坐标
145
+ # 计算公式中右边平方号里的部分
146
+ ratio = (ddradius - distance) / (ddradius - distance + ddmc)
147
+ ratio = ratio * ratio
148
+ # 映射原位置
149
+ UX = i - ratio * (endX - startX)
150
+ UY = j - ratio * (endY - startY)
151
+
152
+ # 根据双线性插值法得到UX,UY的值
153
+ # start_ = time.time()
154
+ value = BilinearInsert(srcImg, UX, UY)
155
+ # print(f"双线性插值耗时;{time.time() - start_}")
156
+ # 改变当前 i ,j的值
157
+ copyImg[j + startTY, i + startTX] = value
158
+ return copyImg
159
+
160
+ # # 瘦脸pro2,采用了numpy自定义函数做处理
161
+ # def localTranslationWarpNumpy(self, srcImg, startP: np.matrix, endP: np.matrix, radius: float):
162
+ # startX , startY = startP[0, 0], startP[0, 1]
163
+ # endX, endY = endP[0, 0], endP[0, 1]
164
+ # ddradius = float(radius * radius) # 圆的半径
165
+ # copyImg = srcImg.copy() # copy后的图像矩阵
166
+ # # 计算公式中的|m-c|^2
167
+ # ddmc = (endX - startX)**2 + (endY - startY)**2
168
+ # # 计算正方形的左上角起始点
169
+ # startTX, startTY = (startX - math.floor(radius + 1), startY - math.floor((radius + 1)))
170
+ # # 计算正方形的右下角的结束点
171
+ # endTX, endTY = (startX + math.floor(radius + 1), startY + math.floor((radius + 1)))
172
+ # # 剪切srcImg
173
+ # self.thinImage = srcImg[startTY : endTY + 1, startTX : endTX + 1, :]
174
+ # # s = self.thinImage
175
+ # # db.cv_show(srcImg)
176
+ # # 裁剪后的图像相当于在x,y都减少了startX - math.floor(radius + 1)
177
+ # # 原本的endX, endY在切后的坐标点
178
+ # endX, endY = (endX - startX + math.floor(radius + 1), endY - startY + math.floor(radius + 1))
179
+ # # 原本的startX, startY剪切后的坐标点
180
+ # startX ,startY = (math.floor(radius + 1), math.floor(radius + 1))
181
+ # H, W, C = self.thinImage.shape # 获取图像的形状
182
+ # index_m = np.arange(H * W).reshape((H, W))
183
+ # triangle_ufunc = np.frompyfunc(self.process, 9, 3)
184
+ # # start_ = time.time()
185
+ # finalImgB, finalImgG, finalImgR = triangle_ufunc(index_m, self, W, ddradius, ddmc, startX, startY, endX, endY)
186
+ # finaleImg = np.dstack((finalImgB, finalImgG, finalImgR)).astype(np.uint8)
187
+ # finaleImg = np.fliplr(np.rot90(finaleImg, -1))
188
+ # copyImg[startTY: endTY + 1, startTX: endTX + 1, :] = finaleImg
189
+ # # print(f"图像处理耗时;{time.time() - start_}")
190
+ # # db.cv_show(copyImg)
191
+ # return copyImg
192
+
193
+ # 瘦脸pro3,采用opencv内置函数
194
+ @staticmethod
195
+ def localTranslationWarpFastWithStrength(
196
+ srcImg, startP: np.matrix, endP: np.matrix, radius, strength: float = 100.0
197
+ ):
198
+ """
199
+ 采用opencv内置函数
200
+ Args:
201
+ srcImg: 源图像
202
+ startP: 起点位置
203
+ endP: 终点位置
204
+ radius: 处理半径
205
+ strength: 瘦脸强度,一般取100以上
206
+
207
+ Returns:
208
+
209
+ """
210
+ startX, startY = startP[0, 0], startP[0, 1]
211
+ endX, endY = endP[0, 0], endP[0, 1]
212
+ ddradius = float(radius * radius)
213
+ # copyImg = np.zeros(srcImg.shape, np.uint8)
214
+ # copyImg = srcImg.copy()
215
+
216
+ maskImg = np.zeros(srcImg.shape[:2], np.uint8)
217
+ cv2.circle(maskImg, (startX, startY), math.ceil(radius), (255, 255, 255), -1)
218
+
219
+ K0 = 100 / strength
220
+
221
+ # 计算公式中的|m-c|^2
222
+ ddmc_x = (endX - startX) * (endX - startX)
223
+ ddmc_y = (endY - startY) * (endY - startY)
224
+ H, W, C = srcImg.shape
225
+
226
+ mapX = np.vstack([np.arange(W).astype(np.float32).reshape(1, -1)] * H)
227
+ mapY = np.hstack([np.arange(H).astype(np.float32).reshape(-1, 1)] * W)
228
+
229
+ distance_x = (mapX - startX) * (mapX - startX)
230
+ distance_y = (mapY - startY) * (mapY - startY)
231
+ distance = distance_x + distance_y
232
+ K1 = np.sqrt(distance)
233
+ ratio_x = (ddradius - distance_x) / (ddradius - distance_x + K0 * ddmc_x)
234
+ ratio_y = (ddradius - distance_y) / (ddradius - distance_y + K0 * ddmc_y)
235
+ ratio_x = ratio_x * ratio_x
236
+ ratio_y = ratio_y * ratio_y
237
+
238
+ UX = mapX - ratio_x * (endX - startX) * (1 - K1 / radius)
239
+ UY = mapY - ratio_y * (endY - startY) * (1 - K1 / radius)
240
+
241
+ np.copyto(UX, mapX, where=maskImg == 0)
242
+ np.copyto(UY, mapY, where=maskImg == 0)
243
+ UX = UX.astype(np.float32)
244
+ UY = UY.astype(np.float32)
245
+ copyImg = cv2.remap(srcImg, UX, UY, interpolation=cv2.INTER_LINEAR)
246
+ return copyImg
247
+
248
+
249
+ def thinFace(src, landmark, place: int = 0, strength=30.0):
250
+ """
251
+ 瘦脸程序接口,输入人脸关键点信息和强度,即可实现瘦脸
252
+ 注意处理四通道图像
253
+ Args:
254
+ src: 原图
255
+ landmark: 关键点信息
256
+ place: 选择瘦脸区域,为0-4之间的值
257
+ strength: 瘦脸强度,输入值在0-10之间,如果小于或者等于0,则不瘦脸
258
+
259
+ Returns:
260
+ 瘦脸后的图像
261
+ """
262
+ strength = min(100.0, strength * 10.0)
263
+ if strength <= 0.0:
264
+ return src
265
+ # 也可以设置瘦脸区域
266
+ place = max(0, min(4, int(place)))
267
+ left_landmark = landmark[4 + place]
268
+ left_landmark_down = landmark[6 + place]
269
+ right_landmark = landmark[13 + place]
270
+ right_landmark_down = landmark[15 + place]
271
+ endPt = landmark[58]
272
+ # 计算第4个点到第6个点的距离作为瘦脸距离
273
+ r_left = math.sqrt(
274
+ (left_landmark[0, 0] - left_landmark_down[0, 0]) ** 2
275
+ + (left_landmark[0, 1] - left_landmark_down[0, 1]) ** 2
276
+ )
277
+
278
+ # 计算第14个点到第16个点的距离作为瘦脸距离
279
+ r_right = math.sqrt(
280
+ (right_landmark[0, 0] - right_landmark_down[0, 0]) ** 2
281
+ + (right_landmark[0, 1] - right_landmark_down[0, 1]) ** 2
282
+ )
283
+ # 瘦左边脸
284
+ thin_image = TranslationWarp.localTranslationWarpFastWithStrength(
285
+ src, left_landmark[0], endPt[0], r_left, strength
286
+ )
287
+ # 瘦右边脸
288
+ thin_image = TranslationWarp.localTranslationWarpFastWithStrength(
289
+ thin_image, right_landmark[0], endPt[0], r_right, strength
290
+ )
291
+ return thin_image
292
+
293
+
294
+ # if __name__ == "__main__":
295
+ # import os
296
+ # from hycv.FaceDetection68.faceDetection68 import FaceDetection68
297
+
298
+ # local_file = os.path.dirname(__file__)
299
+ # PREDICTOR_PATH = f"{local_file}/weights/shape_predictor_68_face_landmarks.dat" # 关键点检测模型路径
300
+ # fd68 = FaceDetection68(model_path=PREDICTOR_PATH)
301
+ # input_image = cv2.imread("test_image/4.jpg", -1)
302
+ # _, landmark_, _ = fd68.facePoints(input_image)
303
+ # output_image = thinFace(input_image, landmark_, strength=30.2)
304
+ # cv2.imwrite("thinFaceCompare.png", np.hstack((input_image, output_image)))
hivision/plugin/beauty/whitening.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+ import gradio as gr
5
+
6
+
7
+ class LutWhite:
8
+ CUBE64_ROWS = 8
9
+ CUBE64_SIZE = 64
10
+ CUBE256_SIZE = 256
11
+ CUBE_SCALE = CUBE256_SIZE // CUBE64_SIZE
12
+
13
+ def __init__(self, lut_image):
14
+ self.lut = self._create_lut(lut_image)
15
+
16
+ def _create_lut(self, lut_image):
17
+ reshape_lut = np.zeros(
18
+ (self.CUBE256_SIZE, self.CUBE256_SIZE, self.CUBE256_SIZE, 3), dtype=np.uint8
19
+ )
20
+ for i in range(self.CUBE64_SIZE):
21
+ tmp = i // self.CUBE64_ROWS
22
+ cx = (i % self.CUBE64_ROWS) * self.CUBE64_SIZE
23
+ cy = tmp * self.CUBE64_SIZE
24
+ cube64 = lut_image[cy : cy + self.CUBE64_SIZE, cx : cx + self.CUBE64_SIZE]
25
+ if cube64.size == 0:
26
+ continue
27
+ cube256 = cv2.resize(cube64, (self.CUBE256_SIZE, self.CUBE256_SIZE))
28
+ reshape_lut[i * self.CUBE_SCALE : (i + 1) * self.CUBE_SCALE] = cube256
29
+ return reshape_lut
30
+
31
+ def apply(self, src):
32
+ b, g, r = src[:, :, 0], src[:, :, 1], src[:, :, 2]
33
+ return self.lut[b, g, r]
34
+
35
+
36
+ class MakeWhiter:
37
+ def __init__(self, lut_image):
38
+ self.lut_white = LutWhite(lut_image)
39
+
40
+ def run(self, src: np.ndarray, strength: int) -> np.ndarray:
41
+ strength = np.clip(strength / 10.0, 0, 1)
42
+ if strength <= 0:
43
+ return src
44
+ img = self.lut_white.apply(src[:, :, :3])
45
+ return cv2.addWeighted(src[:, :, :3], 1 - strength, img, strength, 0)
46
+
47
+
48
+ base_dir = os.path.dirname(os.path.abspath(__file__))
49
+ default_lut = cv2.imread(os.path.join(base_dir, "lut/lut_origin.png"))
50
+ make_whiter = MakeWhiter(default_lut)
51
+
52
+
53
+ def make_whitening(image, strength):
54
+ image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
55
+ output_image = make_whiter.run(image, strength)
56
+ return cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
57
+
58
+
59
+ def make_whitening_png(image, strength):
60
+ image = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2BGRA)
61
+
62
+ b, g, r, a = cv2.split(image)
63
+ bgr_image = cv2.merge((b, g, r))
64
+
65
+ b_w, g_w, r_w = cv2.split(make_whiter.run(bgr_image, strength))
66
+ output_image = cv2.merge((b_w, g_w, r_w, a))
67
+
68
+ return cv2.cvtColor(output_image, cv2.COLOR_RGBA2BGRA)
69
+
70
+
71
+ # 启动Gradio应用
72
+ if __name__ == "__main__":
73
+ demo = gr.Interface(
74
+ fn=make_whitening_png,
75
+ inputs=[
76
+ gr.Image(type="pil", image_mode="RGBA", label="Input Image"),
77
+ gr.Slider(0, 10, step=1, label="Whitening Strength"),
78
+ ],
79
+ outputs=gr.Image(type="pil"),
80
+ title="Image Whitening Demo",
81
+ description="Upload an image and adjust the whitening strength to see the effect.",
82
+ )
83
+ demo.launch()
hivision/utils.py CHANGED
@@ -12,6 +12,7 @@ import io
12
  import numpy as np
13
  import cv2
14
  import base64
 
15
 
16
 
17
  def resize_image_to_kb(input_image, output_image_path, target_size_kb):
@@ -74,12 +75,6 @@ def resize_image_to_kb(input_image, output_image_path, target_size_kb):
74
  quality = 1
75
 
76
 
77
- import numpy as np
78
- from PIL import Image
79
- import io
80
- import base64
81
-
82
-
83
  def resize_image_to_kb_base64(input_image, target_size_kb, mode="exact"):
84
  """
85
  Resize an image to a target size in KB and return it as a base64 encoded string.
@@ -153,13 +148,20 @@ def resize_image_to_kb_base64(input_image, target_size_kb, mode="exact"):
153
  return img_base64
154
 
155
 
156
- def numpy_2_base64(img: np.ndarray):
157
  _, buffer = cv2.imencode(".png", img)
158
  base64_image = base64.b64encode(buffer).decode("utf-8")
159
 
160
  return base64_image
161
 
162
 
 
 
 
 
 
 
 
163
  def save_numpy_image(numpy_img, file_path):
164
  # 检查数组的形状
165
  if numpy_img.shape[2] == 4:
@@ -273,3 +275,20 @@ def add_background(input_image, bgr=(0, 0, 0), mode="pure_color"):
273
  )
274
 
275
  return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  import numpy as np
13
  import cv2
14
  import base64
15
+ from hivision.plugin.watermark import Watermarker, WatermarkerStyles
16
 
17
 
18
  def resize_image_to_kb(input_image, output_image_path, target_size_kb):
 
75
  quality = 1
76
 
77
 
 
 
 
 
 
 
78
  def resize_image_to_kb_base64(input_image, target_size_kb, mode="exact"):
79
  """
80
  Resize an image to a target size in KB and return it as a base64 encoded string.
 
148
  return img_base64
149
 
150
 
151
+ def numpy_2_base64(img: np.ndarray) -> str:
152
  _, buffer = cv2.imencode(".png", img)
153
  base64_image = base64.b64encode(buffer).decode("utf-8")
154
 
155
  return base64_image
156
 
157
 
158
+ def base64_2_numpy(base64_image: str) -> np.ndarray:
159
+ img = base64.b64decode(base64_image)
160
+ img = np.frombuffer(img, np.uint8)
161
+
162
+ return img
163
+
164
+
165
  def save_numpy_image(numpy_img, file_path):
166
  # 检查数组的形状
167
  if numpy_img.shape[2] == 4:
 
275
  )
276
 
277
  return output
278
+
279
+
280
+ def add_watermark(
281
+ image, text, size=50, opacity=0.5, angle=45, color="#8B8B1B", space=75
282
+ ):
283
+ image = Image.fromarray(image)
284
+ watermarker = Watermarker(
285
+ input_image=image,
286
+ text=text,
287
+ style=WatermarkerStyles.STRIPED,
288
+ angle=angle,
289
+ color=color,
290
+ opacity=opacity,
291
+ size=size,
292
+ space=space,
293
+ )
294
+ return np.array(watermarker.image.convert("RGB"))