Kevin676
commited on
Commit
·
9e1a4da
0
Parent(s):
Duplicate from Kevin676/Shanghainese-TTS
Browse files- .gitattributes +32 -0
- README.md +13 -0
- __pycache__/attentions.cpython-37.pyc +0 -0
- __pycache__/commons.cpython-37.pyc +0 -0
- __pycache__/mel_processing.cpython-37.pyc +0 -0
- __pycache__/models.cpython-37.pyc +0 -0
- __pycache__/modules.cpython-37.pyc +0 -0
- __pycache__/transforms.cpython-37.pyc +0 -0
- __pycache__/utils.cpython-37.pyc +0 -0
- app.py +193 -0
- attentions.py +300 -0
- commons.py +97 -0
- lexicon/zaonhe.json +19 -0
- lexicon/zaonhe.ocd2 +3 -0
- mel_processing.py +101 -0
- model/config.json +35 -0
- model/model.pth +3 -0
- models.py +535 -0
- modules.py +387 -0
- monotonic_align/__init__.py +19 -0
- monotonic_align/__pycache__/__init__.cpython-310.pyc +0 -0
- monotonic_align/__pycache__/__init__.cpython-37.pyc +0 -0
- monotonic_align/__pycache__/core.cpython-37.pyc +0 -0
- monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.exp +0 -0
- monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.lib +0 -0
- monotonic_align/build/temp.win-amd64-3.7/Release/core.obj +0 -0
- monotonic_align/core.c +0 -0
- monotonic_align/core.py +35 -0
- monotonic_align/monotonic_align/core.cp37-win_amd64.pyd +0 -0
- requirements.txt +16 -0
- shanghainese_script.txt +2051 -0
- text/__init__.py +32 -0
- text/__pycache__/__init__.cpython-37.pyc +0 -0
- text/__pycache__/cleaners.cpython-37.pyc +0 -0
- text/cleaners.py +65 -0
- transforms.py +193 -0
- utils.py +75 -0
.gitattributes
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
23 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
lexicon/zaonhe.ocd2 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: ChatGLM-6B-with-Voice-Cloning-All-in-One
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.21.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: Kevin676/Shanghainese-TTS
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/attentions.cpython-37.pyc
ADDED
Binary file (9.62 kB). View file
|
|
__pycache__/commons.cpython-37.pyc
ADDED
Binary file (3.28 kB). View file
|
|
__pycache__/mel_processing.cpython-37.pyc
ADDED
Binary file (3.07 kB). View file
|
|
__pycache__/models.cpython-37.pyc
ADDED
Binary file (15.4 kB). View file
|
|
__pycache__/modules.cpython-37.pyc
ADDED
Binary file (11.5 kB). View file
|
|
__pycache__/transforms.cpython-37.pyc
ADDED
Binary file (3.85 kB). View file
|
|
__pycache__/utils.cpython-37.pyc
ADDED
Binary file (2.74 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import librosa
|
3 |
+
import commons
|
4 |
+
import utils
|
5 |
+
from models import SynthesizerTrn
|
6 |
+
from text import text_to_sequence
|
7 |
+
import numpy as np
|
8 |
+
from mel_processing import spectrogram_torch
|
9 |
+
import gradio as gr
|
10 |
+
from text.cleaners import shanghainese_cleaners
|
11 |
+
|
12 |
+
from transformers import AutoModel, AutoTokenizer
|
13 |
+
from TTS.api import TTS
|
14 |
+
|
15 |
+
tts = TTS("tts_models/zh-CN/baker/tacotron2-DDC-GST")
|
16 |
+
|
17 |
+
tts1 = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True)
|
18 |
+
|
19 |
+
import torchaudio
|
20 |
+
from speechbrain.pretrained import SpectralMaskEnhancement
|
21 |
+
|
22 |
+
enhance_model = SpectralMaskEnhancement.from_hparams(
|
23 |
+
source="speechbrain/metricgan-plus-voicebank",
|
24 |
+
savedir="pretrained_models/metricgan-plus-voicebank",
|
25 |
+
run_opts={"device":"cuda"},
|
26 |
+
)
|
27 |
+
|
28 |
+
from denoiser import pretrained
|
29 |
+
from denoiser.dsp import convert_audio
|
30 |
+
|
31 |
+
model1 = pretrained.dns64().cuda()
|
32 |
+
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
34 |
+
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
35 |
+
model = model.eval()
|
36 |
+
|
37 |
+
def predict(input, history=None):
|
38 |
+
if history is None:
|
39 |
+
history = []
|
40 |
+
response, history = model.chat(tokenizer, input, history)
|
41 |
+
|
42 |
+
return history, history, response
|
43 |
+
|
44 |
+
def chinese(text_cn, upload1, VoiceMicrophone1):
|
45 |
+
|
46 |
+
if upload1 is not None:
|
47 |
+
|
48 |
+
tts.tts_with_vc_to_file(
|
49 |
+
" ".join(text_cn.split()) + "。",
|
50 |
+
speaker_wav=upload1,
|
51 |
+
file_path="output0.wav"
|
52 |
+
)
|
53 |
+
|
54 |
+
else:
|
55 |
+
tts.tts_with_vc_to_file(
|
56 |
+
" ".join(text_cn.split()) + "。",
|
57 |
+
speaker_wav=VoiceMicrophone1,
|
58 |
+
file_path="output0.wav"
|
59 |
+
)
|
60 |
+
|
61 |
+
noisy = enhance_model.load_audio(
|
62 |
+
"output0.wav"
|
63 |
+
).unsqueeze(0)
|
64 |
+
|
65 |
+
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
|
66 |
+
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
|
67 |
+
|
68 |
+
return "enhanced.wav"
|
69 |
+
|
70 |
+
def english(text_en, upload, VoiceMicrophone):
|
71 |
+
if upload is not None:
|
72 |
+
tts1.tts_to_file(text_en.strip(), speaker_wav = upload, language="en", file_path="output.wav")
|
73 |
+
|
74 |
+
else:
|
75 |
+
tts1.tts_to_file(text_en.strip(), speaker_wav = VoiceMicrophone, language="en", file_path="output.wav")
|
76 |
+
|
77 |
+
wav, sr = torchaudio.load("output.wav")
|
78 |
+
wav = convert_audio(wav.cuda(), sr, model1.sample_rate, model1.chin)
|
79 |
+
with torch.no_grad():
|
80 |
+
denoised = model1(wav[None])[0]
|
81 |
+
|
82 |
+
torchaudio.save("denoise.wav", denoised.data.cpu(), model1.sample_rate)
|
83 |
+
|
84 |
+
noisy = enhance_model.load_audio(
|
85 |
+
"denoise.wav"
|
86 |
+
).unsqueeze(0)
|
87 |
+
|
88 |
+
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
|
89 |
+
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
|
90 |
+
|
91 |
+
return "enhanced.wav"
|
92 |
+
|
93 |
+
def clean_text(text,ipa_input):
|
94 |
+
if ipa_input:
|
95 |
+
return shanghainese_cleaners(text)
|
96 |
+
return text
|
97 |
+
|
98 |
+
|
99 |
+
def get_text(text, hps, cleaned=False):
|
100 |
+
if cleaned:
|
101 |
+
text_norm = text_to_sequence(text, hps.symbols, [])
|
102 |
+
else:
|
103 |
+
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
104 |
+
if hps.data.add_blank:
|
105 |
+
text_norm = commons.intersperse(text_norm, 0)
|
106 |
+
text_norm = torch.LongTensor(text_norm)
|
107 |
+
return text_norm
|
108 |
+
|
109 |
+
|
110 |
+
def speech_synthesize(text, cleaned, length_scale):
|
111 |
+
text=text.replace('\n','')
|
112 |
+
print(text)
|
113 |
+
stn_tst = get_text(text, hps_ms, cleaned)
|
114 |
+
with torch.no_grad():
|
115 |
+
x_tst = stn_tst.unsqueeze(0)
|
116 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
117 |
+
sid = torch.LongTensor([0])
|
118 |
+
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
|
119 |
+
return (hps_ms.data.sampling_rate, audio)
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
hps_ms = utils.get_hparams_from_file('model/config.json')
|
124 |
+
n_speakers = hps_ms.data.n_speakers
|
125 |
+
n_symbols = len(hps_ms.symbols)
|
126 |
+
speakers = hps_ms.speakers
|
127 |
+
|
128 |
+
net_g_ms = SynthesizerTrn(
|
129 |
+
n_symbols,
|
130 |
+
hps_ms.data.filter_length // 2 + 1,
|
131 |
+
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
132 |
+
n_speakers=n_speakers,
|
133 |
+
**hps_ms.model)
|
134 |
+
_ = net_g_ms.eval()
|
135 |
+
utils.load_checkpoint('model/model.pth', net_g_ms)
|
136 |
+
|
137 |
+
with gr.Blocks() as demo:
|
138 |
+
gr.Markdown(
|
139 |
+
""" # <center>🥳💬💕 - TalktoAI,随时随地,谈天说地!</center>
|
140 |
+
|
141 |
+
### <center>🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!</center>
|
142 |
+
|
143 |
+
"""
|
144 |
+
)
|
145 |
+
state = gr.State([])
|
146 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=300)
|
147 |
+
res = gr.Textbox(lines=1, placeholder="最新的回答在这里(此内容可编辑,用作声音克隆的文本)", show_label = False).style(container=False)
|
148 |
+
with gr.Row():
|
149 |
+
txt = gr.Textbox(label = "说点什么吧(中英皆可)", lines=1)
|
150 |
+
button = gr.Button("开始对话吧")
|
151 |
+
txt.submit(predict, [txt, state], [chatbot, state, res])
|
152 |
+
button.click(predict, [txt, state], [chatbot, state, res])
|
153 |
+
|
154 |
+
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
155 |
+
inp3 = res
|
156 |
+
inp4 = gr.Audio(source="upload", label = "请上传您喜欢的声音(wav/mp3文件);长语音(~90s)、女声效果更好", type="filepath")
|
157 |
+
inp5 = gr.Audio(source="microphone", type="filepath", label = '请用麦克风上传您喜欢的声音,与文件上传二选一即可')
|
158 |
+
btn1 = gr.Button("用喜欢的声音听一听吧(中文)")
|
159 |
+
|
160 |
+
btn2 = gr.Button("用喜欢的声音听一听吧(英文)")
|
161 |
+
with gr.Row():
|
162 |
+
out1 = gr.Audio(label="为您合成的专属声音(中文)")
|
163 |
+
out2 = gr.Audio(label="为您合成的专属声音(英文)")
|
164 |
+
btn1.click(chinese, [inp3, inp4, inp5], [out1])
|
165 |
+
btn2.click(english, [inp3, inp4, inp5], [out2])
|
166 |
+
|
167 |
+
text_input = res
|
168 |
+
cleaned_text=gr.Checkbox(label='IPA Input',default=True, visible = False)
|
169 |
+
length_scale=gr.Slider(0.5,2,1,step=0.1,label='Speaking Speed',interactive=True, visible = False)
|
170 |
+
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
171 |
+
tts_button = gr.Button('彩蛋:上海话合成')
|
172 |
+
audio_output = gr.Audio(label='听一听上海话吧')
|
173 |
+
cleaned_text.change(clean_text,[text_input,cleaned_text],[text_input])
|
174 |
+
tts_button.click(speech_synthesize,[text_input,cleaned_text,length_scale],[audio_output])
|
175 |
+
|
176 |
+
gr.Markdown(
|
177 |
+
""" ### <center>注意❗:请不要输入或生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及娱乐使用。用户输入或生成的内容与程序开发者无关,请自觉合法合规使用,违反者一切后果自负。</center>
|
178 |
+
|
179 |
+
### <center>Model by [ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b). Thanks to [THUDM](https://github.com/THUDM) and [CjangCjengh](https://github.com/CjangCjengh). Please follow me on [Bilibili](https://space.bilibili.com/501495851?spm_id_from=333.1007.0.0).</center>
|
180 |
+
|
181 |
+
"""
|
182 |
+
)
|
183 |
+
|
184 |
+
gr.HTML('''
|
185 |
+
<div class="footer">
|
186 |
+
<p>🎶🖼️🎡 - It’s the intersection of technology and liberal arts that makes our hearts sing. - Steve Jobs
|
187 |
+
</p>
|
188 |
+
<p>注:中文声音克隆实际上是通过声音转换(Voice Conversion)实现,所以输出结果可能更像是一种新的声音,效果不一定很理想,希望大家多多包涵,之后我们也会不断迭代该程序的!为了实现更好的效果,使用中文声音克隆时请尽量上传女声。
|
189 |
+
</p>
|
190 |
+
</div>
|
191 |
+
''')
|
192 |
+
|
193 |
+
demo.queue().launch(show_error=True)
|
attentions.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
from modules import LayerNorm
|
8 |
+
|
9 |
+
|
10 |
+
class Encoder(nn.Module):
|
11 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
12 |
+
super().__init__()
|
13 |
+
self.hidden_channels = hidden_channels
|
14 |
+
self.filter_channels = filter_channels
|
15 |
+
self.n_heads = n_heads
|
16 |
+
self.n_layers = n_layers
|
17 |
+
self.kernel_size = kernel_size
|
18 |
+
self.p_dropout = p_dropout
|
19 |
+
self.window_size = window_size
|
20 |
+
|
21 |
+
self.drop = nn.Dropout(p_dropout)
|
22 |
+
self.attn_layers = nn.ModuleList()
|
23 |
+
self.norm_layers_1 = nn.ModuleList()
|
24 |
+
self.ffn_layers = nn.ModuleList()
|
25 |
+
self.norm_layers_2 = nn.ModuleList()
|
26 |
+
for i in range(self.n_layers):
|
27 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
28 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
29 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
30 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
31 |
+
|
32 |
+
def forward(self, x, x_mask):
|
33 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
34 |
+
x = x * x_mask
|
35 |
+
for i in range(self.n_layers):
|
36 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
37 |
+
y = self.drop(y)
|
38 |
+
x = self.norm_layers_1[i](x + y)
|
39 |
+
|
40 |
+
y = self.ffn_layers[i](x, x_mask)
|
41 |
+
y = self.drop(y)
|
42 |
+
x = self.norm_layers_2[i](x + y)
|
43 |
+
x = x * x_mask
|
44 |
+
return x
|
45 |
+
|
46 |
+
|
47 |
+
class Decoder(nn.Module):
|
48 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
49 |
+
super().__init__()
|
50 |
+
self.hidden_channels = hidden_channels
|
51 |
+
self.filter_channels = filter_channels
|
52 |
+
self.n_heads = n_heads
|
53 |
+
self.n_layers = n_layers
|
54 |
+
self.kernel_size = kernel_size
|
55 |
+
self.p_dropout = p_dropout
|
56 |
+
self.proximal_bias = proximal_bias
|
57 |
+
self.proximal_init = proximal_init
|
58 |
+
|
59 |
+
self.drop = nn.Dropout(p_dropout)
|
60 |
+
self.self_attn_layers = nn.ModuleList()
|
61 |
+
self.norm_layers_0 = nn.ModuleList()
|
62 |
+
self.encdec_attn_layers = nn.ModuleList()
|
63 |
+
self.norm_layers_1 = nn.ModuleList()
|
64 |
+
self.ffn_layers = nn.ModuleList()
|
65 |
+
self.norm_layers_2 = nn.ModuleList()
|
66 |
+
for i in range(self.n_layers):
|
67 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
68 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
69 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
70 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
71 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
72 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
73 |
+
|
74 |
+
def forward(self, x, x_mask, h, h_mask):
|
75 |
+
"""
|
76 |
+
x: decoder input
|
77 |
+
h: encoder output
|
78 |
+
"""
|
79 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
80 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
81 |
+
x = x * x_mask
|
82 |
+
for i in range(self.n_layers):
|
83 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
84 |
+
y = self.drop(y)
|
85 |
+
x = self.norm_layers_0[i](x + y)
|
86 |
+
|
87 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
88 |
+
y = self.drop(y)
|
89 |
+
x = self.norm_layers_1[i](x + y)
|
90 |
+
|
91 |
+
y = self.ffn_layers[i](x, x_mask)
|
92 |
+
y = self.drop(y)
|
93 |
+
x = self.norm_layers_2[i](x + y)
|
94 |
+
x = x * x_mask
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class MultiHeadAttention(nn.Module):
|
99 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
100 |
+
super().__init__()
|
101 |
+
assert channels % n_heads == 0
|
102 |
+
|
103 |
+
self.channels = channels
|
104 |
+
self.out_channels = out_channels
|
105 |
+
self.n_heads = n_heads
|
106 |
+
self.p_dropout = p_dropout
|
107 |
+
self.window_size = window_size
|
108 |
+
self.heads_share = heads_share
|
109 |
+
self.block_length = block_length
|
110 |
+
self.proximal_bias = proximal_bias
|
111 |
+
self.proximal_init = proximal_init
|
112 |
+
self.attn = None
|
113 |
+
|
114 |
+
self.k_channels = channels // n_heads
|
115 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
116 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
117 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
118 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
119 |
+
self.drop = nn.Dropout(p_dropout)
|
120 |
+
|
121 |
+
if window_size is not None:
|
122 |
+
n_heads_rel = 1 if heads_share else n_heads
|
123 |
+
rel_stddev = self.k_channels**-0.5
|
124 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
125 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
126 |
+
|
127 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
128 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
129 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
130 |
+
if proximal_init:
|
131 |
+
with torch.no_grad():
|
132 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
133 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
134 |
+
|
135 |
+
def forward(self, x, c, attn_mask=None):
|
136 |
+
q = self.conv_q(x)
|
137 |
+
k = self.conv_k(c)
|
138 |
+
v = self.conv_v(c)
|
139 |
+
|
140 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
141 |
+
|
142 |
+
x = self.conv_o(x)
|
143 |
+
return x
|
144 |
+
|
145 |
+
def attention(self, query, key, value, mask=None):
|
146 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
147 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
148 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
149 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
150 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
151 |
+
|
152 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
153 |
+
if self.window_size is not None:
|
154 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
155 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
156 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
157 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
158 |
+
scores = scores + scores_local
|
159 |
+
if self.proximal_bias:
|
160 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
161 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
162 |
+
if mask is not None:
|
163 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
164 |
+
if self.block_length is not None:
|
165 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
166 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
167 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
168 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
169 |
+
p_attn = self.drop(p_attn)
|
170 |
+
output = torch.matmul(p_attn, value)
|
171 |
+
if self.window_size is not None:
|
172 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
173 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
174 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
175 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
176 |
+
return output, p_attn
|
177 |
+
|
178 |
+
def _matmul_with_relative_values(self, x, y):
|
179 |
+
"""
|
180 |
+
x: [b, h, l, m]
|
181 |
+
y: [h or 1, m, d]
|
182 |
+
ret: [b, h, l, d]
|
183 |
+
"""
|
184 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
185 |
+
return ret
|
186 |
+
|
187 |
+
def _matmul_with_relative_keys(self, x, y):
|
188 |
+
"""
|
189 |
+
x: [b, h, l, d]
|
190 |
+
y: [h or 1, m, d]
|
191 |
+
ret: [b, h, l, m]
|
192 |
+
"""
|
193 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
194 |
+
return ret
|
195 |
+
|
196 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
197 |
+
max_relative_position = 2 * self.window_size + 1
|
198 |
+
# Pad first before slice to avoid using cond ops.
|
199 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
200 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
201 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
202 |
+
if pad_length > 0:
|
203 |
+
padded_relative_embeddings = F.pad(
|
204 |
+
relative_embeddings,
|
205 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
206 |
+
else:
|
207 |
+
padded_relative_embeddings = relative_embeddings
|
208 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
209 |
+
return used_relative_embeddings
|
210 |
+
|
211 |
+
def _relative_position_to_absolute_position(self, x):
|
212 |
+
"""
|
213 |
+
x: [b, h, l, 2*l-1]
|
214 |
+
ret: [b, h, l, l]
|
215 |
+
"""
|
216 |
+
batch, heads, length, _ = x.size()
|
217 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
218 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
219 |
+
|
220 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
221 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
222 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
223 |
+
|
224 |
+
# Reshape and slice out the padded elements.
|
225 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
226 |
+
return x_final
|
227 |
+
|
228 |
+
def _absolute_position_to_relative_position(self, x):
|
229 |
+
"""
|
230 |
+
x: [b, h, l, l]
|
231 |
+
ret: [b, h, l, 2*l-1]
|
232 |
+
"""
|
233 |
+
batch, heads, length, _ = x.size()
|
234 |
+
# padd along column
|
235 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
236 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
237 |
+
# add 0's in the beginning that will skew the elements after reshape
|
238 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
239 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
240 |
+
return x_final
|
241 |
+
|
242 |
+
def _attention_bias_proximal(self, length):
|
243 |
+
"""Bias for self-attention to encourage attention to close positions.
|
244 |
+
Args:
|
245 |
+
length: an integer scalar.
|
246 |
+
Returns:
|
247 |
+
a Tensor with shape [1, 1, length, length]
|
248 |
+
"""
|
249 |
+
r = torch.arange(length, dtype=torch.float32)
|
250 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
251 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
252 |
+
|
253 |
+
|
254 |
+
class FFN(nn.Module):
|
255 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
256 |
+
super().__init__()
|
257 |
+
self.in_channels = in_channels
|
258 |
+
self.out_channels = out_channels
|
259 |
+
self.filter_channels = filter_channels
|
260 |
+
self.kernel_size = kernel_size
|
261 |
+
self.p_dropout = p_dropout
|
262 |
+
self.activation = activation
|
263 |
+
self.causal = causal
|
264 |
+
|
265 |
+
if causal:
|
266 |
+
self.padding = self._causal_padding
|
267 |
+
else:
|
268 |
+
self.padding = self._same_padding
|
269 |
+
|
270 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
271 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
272 |
+
self.drop = nn.Dropout(p_dropout)
|
273 |
+
|
274 |
+
def forward(self, x, x_mask):
|
275 |
+
x = self.conv_1(self.padding(x * x_mask))
|
276 |
+
if self.activation == "gelu":
|
277 |
+
x = x * torch.sigmoid(1.702 * x)
|
278 |
+
else:
|
279 |
+
x = torch.relu(x)
|
280 |
+
x = self.drop(x)
|
281 |
+
x = self.conv_2(self.padding(x * x_mask))
|
282 |
+
return x * x_mask
|
283 |
+
|
284 |
+
def _causal_padding(self, x):
|
285 |
+
if self.kernel_size == 1:
|
286 |
+
return x
|
287 |
+
pad_l = self.kernel_size - 1
|
288 |
+
pad_r = 0
|
289 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
290 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
291 |
+
return x
|
292 |
+
|
293 |
+
def _same_padding(self, x):
|
294 |
+
if self.kernel_size == 1:
|
295 |
+
return x
|
296 |
+
pad_l = (self.kernel_size - 1) // 2
|
297 |
+
pad_r = self.kernel_size // 2
|
298 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
299 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
300 |
+
return x
|
commons.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import torch.jit
|
5 |
+
|
6 |
+
|
7 |
+
def script_method(fn, _rcb=None):
|
8 |
+
return fn
|
9 |
+
|
10 |
+
|
11 |
+
def script(obj, optimize=True, _frames_up=0, _rcb=None):
|
12 |
+
return obj
|
13 |
+
|
14 |
+
|
15 |
+
torch.jit.script_method = script_method
|
16 |
+
torch.jit.script = script
|
17 |
+
|
18 |
+
|
19 |
+
def init_weights(m, mean=0.0, std=0.01):
|
20 |
+
classname = m.__class__.__name__
|
21 |
+
if classname.find("Conv") != -1:
|
22 |
+
m.weight.data.normal_(mean, std)
|
23 |
+
|
24 |
+
|
25 |
+
def get_padding(kernel_size, dilation=1):
|
26 |
+
return int((kernel_size*dilation - dilation)/2)
|
27 |
+
|
28 |
+
|
29 |
+
def intersperse(lst, item):
|
30 |
+
result = [item] * (len(lst) * 2 + 1)
|
31 |
+
result[1::2] = lst
|
32 |
+
return result
|
33 |
+
|
34 |
+
|
35 |
+
def slice_segments(x, ids_str, segment_size=4):
|
36 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
37 |
+
for i in range(x.size(0)):
|
38 |
+
idx_str = ids_str[i]
|
39 |
+
idx_end = idx_str + segment_size
|
40 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
41 |
+
return ret
|
42 |
+
|
43 |
+
|
44 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
45 |
+
b, d, t = x.size()
|
46 |
+
if x_lengths is None:
|
47 |
+
x_lengths = t
|
48 |
+
ids_str_max = x_lengths - segment_size + 1
|
49 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
50 |
+
ret = slice_segments(x, ids_str, segment_size)
|
51 |
+
return ret, ids_str
|
52 |
+
|
53 |
+
|
54 |
+
def subsequent_mask(length):
|
55 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
56 |
+
return mask
|
57 |
+
|
58 |
+
|
59 |
+
@torch.jit.script
|
60 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
61 |
+
n_channels_int = n_channels[0]
|
62 |
+
in_act = input_a + input_b
|
63 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
64 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
65 |
+
acts = t_act * s_act
|
66 |
+
return acts
|
67 |
+
|
68 |
+
|
69 |
+
def convert_pad_shape(pad_shape):
|
70 |
+
l = pad_shape[::-1]
|
71 |
+
pad_shape = [item for sublist in l for item in sublist]
|
72 |
+
return pad_shape
|
73 |
+
|
74 |
+
|
75 |
+
def sequence_mask(length, max_length=None):
|
76 |
+
if max_length is None:
|
77 |
+
max_length = length.max()
|
78 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
79 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
80 |
+
|
81 |
+
|
82 |
+
def generate_path(duration, mask):
|
83 |
+
"""
|
84 |
+
duration: [b, 1, t_x]
|
85 |
+
mask: [b, 1, t_y, t_x]
|
86 |
+
"""
|
87 |
+
device = duration.device
|
88 |
+
|
89 |
+
b, _, t_y, t_x = mask.shape
|
90 |
+
cum_duration = torch.cumsum(duration, -1)
|
91 |
+
|
92 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
93 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
94 |
+
path = path.view(b, t_x, t_y)
|
95 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
96 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
97 |
+
return path
|
lexicon/zaonhe.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Shanghainese to IPA",
|
3 |
+
"segmentation": {
|
4 |
+
"type": "mmseg",
|
5 |
+
"dict": {
|
6 |
+
"type": "ocd2",
|
7 |
+
"file": "zaonhe.ocd2"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
"conversion_chain": [{
|
11 |
+
"dict": {
|
12 |
+
"type": "group",
|
13 |
+
"dicts": [{
|
14 |
+
"type": "ocd2",
|
15 |
+
"file": "zaonhe.ocd2"
|
16 |
+
}]
|
17 |
+
}
|
18 |
+
}]
|
19 |
+
}
|
lexicon/zaonhe.ocd2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a71b5a97eb49699f440137391565d208ea82156f0765986b7f3e16909e15672e
|
3 |
+
size 4095228
|
mel_processing.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.utils.data
|
3 |
+
from librosa.filters import mel as librosa_mel_fn
|
4 |
+
|
5 |
+
MAX_WAV_VALUE = 32768.0
|
6 |
+
|
7 |
+
|
8 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
9 |
+
"""
|
10 |
+
PARAMS
|
11 |
+
------
|
12 |
+
C: compression factor
|
13 |
+
"""
|
14 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
15 |
+
|
16 |
+
|
17 |
+
def dynamic_range_decompression_torch(x, C=1):
|
18 |
+
"""
|
19 |
+
PARAMS
|
20 |
+
------
|
21 |
+
C: compression factor used to compress
|
22 |
+
"""
|
23 |
+
return torch.exp(x) / C
|
24 |
+
|
25 |
+
|
26 |
+
def spectral_normalize_torch(magnitudes):
|
27 |
+
output = dynamic_range_compression_torch(magnitudes)
|
28 |
+
return output
|
29 |
+
|
30 |
+
|
31 |
+
def spectral_de_normalize_torch(magnitudes):
|
32 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
mel_basis = {}
|
37 |
+
hann_window = {}
|
38 |
+
|
39 |
+
|
40 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
41 |
+
if torch.min(y) < -1.:
|
42 |
+
print('min value is ', torch.min(y))
|
43 |
+
if torch.max(y) > 1.:
|
44 |
+
print('max value is ', torch.max(y))
|
45 |
+
|
46 |
+
global hann_window
|
47 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
48 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
49 |
+
if wnsize_dtype_device not in hann_window:
|
50 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
51 |
+
|
52 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
53 |
+
y = y.squeeze(1)
|
54 |
+
|
55 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
56 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
57 |
+
|
58 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
59 |
+
return spec
|
60 |
+
|
61 |
+
|
62 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
63 |
+
global mel_basis
|
64 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
65 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
66 |
+
if fmax_dtype_device not in mel_basis:
|
67 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
68 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
69 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
70 |
+
spec = spectral_normalize_torch(spec)
|
71 |
+
return spec
|
72 |
+
|
73 |
+
|
74 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
75 |
+
if torch.min(y) < -1.:
|
76 |
+
print('min value is ', torch.min(y))
|
77 |
+
if torch.max(y) > 1.:
|
78 |
+
print('max value is ', torch.max(y))
|
79 |
+
|
80 |
+
global mel_basis, hann_window
|
81 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
82 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
83 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
84 |
+
if fmax_dtype_device not in mel_basis:
|
85 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
86 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
87 |
+
if wnsize_dtype_device not in hann_window:
|
88 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
89 |
+
|
90 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
91 |
+
y = y.squeeze(1)
|
92 |
+
|
93 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
94 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
95 |
+
|
96 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
97 |
+
|
98 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
99 |
+
spec = spectral_normalize_torch(spec)
|
100 |
+
|
101 |
+
return spec
|
model/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"segment_size": 8192
|
4 |
+
},
|
5 |
+
"data": {
|
6 |
+
"text_cleaners":["shanghainese_cleaners"],
|
7 |
+
"max_wav_value": 32768.0,
|
8 |
+
"sampling_rate": 22050,
|
9 |
+
"filter_length": 1024,
|
10 |
+
"hop_length": 256,
|
11 |
+
"win_length": 1024,
|
12 |
+
"add_blank": true,
|
13 |
+
"n_speakers": 2
|
14 |
+
},
|
15 |
+
"model": {
|
16 |
+
"inter_channels": 192,
|
17 |
+
"hidden_channels": 192,
|
18 |
+
"filter_channels": 768,
|
19 |
+
"n_heads": 2,
|
20 |
+
"n_layers": 6,
|
21 |
+
"kernel_size": 3,
|
22 |
+
"p_dropout": 0.1,
|
23 |
+
"resblock": "1",
|
24 |
+
"resblock_kernel_sizes": [3,7,11],
|
25 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
26 |
+
"upsample_rates": [8,8,2,2],
|
27 |
+
"upsample_initial_channel": 512,
|
28 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
29 |
+
"n_layers_q": 3,
|
30 |
+
"use_spectral_norm": false,
|
31 |
+
"gin_channels": 256
|
32 |
+
},
|
33 |
+
"speakers": ["1", "2"],
|
34 |
+
"symbols": ["_", ",", ".", "!", "?", "\u2026", "a", "b", "d", "f", "g", "h", "i", "k", "l", "m", "n", "o", "p", "s", "t", "u", "v", "y", "z", "\u00f8", "\u014b", "\u0235", "\u0251", "\u0254", "\u0255", "\u0259", "\u0264", "\u0266", "\u026a", "\u027f", "\u0291", "\u0294", "\u02b0", "\u0303", "\u0329", "\u1d00", "\u1d07", "1", "5", "6", "7", "8", " "]
|
35 |
+
}
|
model/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:750299355c3cd6bec4bca61ac50dbfb4c1e129be9b0806442cee24071bed657b
|
3 |
+
size 158882637
|
models.py
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import modules
|
8 |
+
import attentions
|
9 |
+
import monotonic_align
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
class StochasticDurationPredictor(nn.Module):
|
17 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
18 |
+
super().__init__()
|
19 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
20 |
+
self.in_channels = in_channels
|
21 |
+
self.filter_channels = filter_channels
|
22 |
+
self.kernel_size = kernel_size
|
23 |
+
self.p_dropout = p_dropout
|
24 |
+
self.n_flows = n_flows
|
25 |
+
self.gin_channels = gin_channels
|
26 |
+
|
27 |
+
self.log_flow = modules.Log()
|
28 |
+
self.flows = nn.ModuleList()
|
29 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
30 |
+
for i in range(n_flows):
|
31 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
32 |
+
self.flows.append(modules.Flip())
|
33 |
+
|
34 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
35 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
36 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
37 |
+
self.post_flows = nn.ModuleList()
|
38 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
39 |
+
for i in range(4):
|
40 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
41 |
+
self.post_flows.append(modules.Flip())
|
42 |
+
|
43 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
44 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
45 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
46 |
+
if gin_channels != 0:
|
47 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
48 |
+
|
49 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
50 |
+
x = torch.detach(x)
|
51 |
+
x = self.pre(x)
|
52 |
+
if g is not None:
|
53 |
+
g = torch.detach(g)
|
54 |
+
x = x + self.cond(g)
|
55 |
+
x = self.convs(x, x_mask)
|
56 |
+
x = self.proj(x) * x_mask
|
57 |
+
|
58 |
+
if not reverse:
|
59 |
+
flows = self.flows
|
60 |
+
assert w is not None
|
61 |
+
|
62 |
+
logdet_tot_q = 0
|
63 |
+
h_w = self.post_pre(w)
|
64 |
+
h_w = self.post_convs(h_w, x_mask)
|
65 |
+
h_w = self.post_proj(h_w) * x_mask
|
66 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
67 |
+
z_q = e_q
|
68 |
+
for flow in self.post_flows:
|
69 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
70 |
+
logdet_tot_q += logdet_q
|
71 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
72 |
+
u = torch.sigmoid(z_u) * x_mask
|
73 |
+
z0 = (w - u) * x_mask
|
74 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
75 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
76 |
+
|
77 |
+
logdet_tot = 0
|
78 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
79 |
+
logdet_tot += logdet
|
80 |
+
z = torch.cat([z0, z1], 1)
|
81 |
+
for flow in flows:
|
82 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
83 |
+
logdet_tot = logdet_tot + logdet
|
84 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
85 |
+
return nll + logq # [b]
|
86 |
+
else:
|
87 |
+
flows = list(reversed(self.flows))
|
88 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
89 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
90 |
+
for flow in flows:
|
91 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
92 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
93 |
+
logw = z0
|
94 |
+
return logw
|
95 |
+
|
96 |
+
|
97 |
+
class DurationPredictor(nn.Module):
|
98 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.in_channels = in_channels
|
102 |
+
self.filter_channels = filter_channels
|
103 |
+
self.kernel_size = kernel_size
|
104 |
+
self.p_dropout = p_dropout
|
105 |
+
self.gin_channels = gin_channels
|
106 |
+
|
107 |
+
self.drop = nn.Dropout(p_dropout)
|
108 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
109 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
110 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
111 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
112 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
113 |
+
|
114 |
+
if gin_channels != 0:
|
115 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
116 |
+
|
117 |
+
def forward(self, x, x_mask, g=None):
|
118 |
+
x = torch.detach(x)
|
119 |
+
if g is not None:
|
120 |
+
g = torch.detach(g)
|
121 |
+
x = x + self.cond(g)
|
122 |
+
x = self.conv_1(x * x_mask)
|
123 |
+
x = torch.relu(x)
|
124 |
+
x = self.norm_1(x)
|
125 |
+
x = self.drop(x)
|
126 |
+
x = self.conv_2(x * x_mask)
|
127 |
+
x = torch.relu(x)
|
128 |
+
x = self.norm_2(x)
|
129 |
+
x = self.drop(x)
|
130 |
+
x = self.proj(x * x_mask)
|
131 |
+
return x * x_mask
|
132 |
+
|
133 |
+
|
134 |
+
class TextEncoder(nn.Module):
|
135 |
+
def __init__(self,
|
136 |
+
n_vocab,
|
137 |
+
out_channels,
|
138 |
+
hidden_channels,
|
139 |
+
filter_channels,
|
140 |
+
n_heads,
|
141 |
+
n_layers,
|
142 |
+
kernel_size,
|
143 |
+
p_dropout):
|
144 |
+
super().__init__()
|
145 |
+
self.n_vocab = n_vocab
|
146 |
+
self.out_channels = out_channels
|
147 |
+
self.hidden_channels = hidden_channels
|
148 |
+
self.filter_channels = filter_channels
|
149 |
+
self.n_heads = n_heads
|
150 |
+
self.n_layers = n_layers
|
151 |
+
self.kernel_size = kernel_size
|
152 |
+
self.p_dropout = p_dropout
|
153 |
+
|
154 |
+
if self.n_vocab!=0:
|
155 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
156 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
157 |
+
|
158 |
+
self.encoder = attentions.Encoder(
|
159 |
+
hidden_channels,
|
160 |
+
filter_channels,
|
161 |
+
n_heads,
|
162 |
+
n_layers,
|
163 |
+
kernel_size,
|
164 |
+
p_dropout)
|
165 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
+
|
167 |
+
def forward(self, x, x_lengths):
|
168 |
+
if self.n_vocab!=0:
|
169 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
170 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
171 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
172 |
+
|
173 |
+
x = self.encoder(x * x_mask, x_mask)
|
174 |
+
stats = self.proj(x) * x_mask
|
175 |
+
|
176 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
177 |
+
return x, m, logs, x_mask
|
178 |
+
|
179 |
+
|
180 |
+
class ResidualCouplingBlock(nn.Module):
|
181 |
+
def __init__(self,
|
182 |
+
channels,
|
183 |
+
hidden_channels,
|
184 |
+
kernel_size,
|
185 |
+
dilation_rate,
|
186 |
+
n_layers,
|
187 |
+
n_flows=4,
|
188 |
+
gin_channels=0):
|
189 |
+
super().__init__()
|
190 |
+
self.channels = channels
|
191 |
+
self.hidden_channels = hidden_channels
|
192 |
+
self.kernel_size = kernel_size
|
193 |
+
self.dilation_rate = dilation_rate
|
194 |
+
self.n_layers = n_layers
|
195 |
+
self.n_flows = n_flows
|
196 |
+
self.gin_channels = gin_channels
|
197 |
+
|
198 |
+
self.flows = nn.ModuleList()
|
199 |
+
for i in range(n_flows):
|
200 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
201 |
+
self.flows.append(modules.Flip())
|
202 |
+
|
203 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
204 |
+
if not reverse:
|
205 |
+
for flow in self.flows:
|
206 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
207 |
+
else:
|
208 |
+
for flow in reversed(self.flows):
|
209 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
210 |
+
return x
|
211 |
+
|
212 |
+
|
213 |
+
class PosteriorEncoder(nn.Module):
|
214 |
+
def __init__(self,
|
215 |
+
in_channels,
|
216 |
+
out_channels,
|
217 |
+
hidden_channels,
|
218 |
+
kernel_size,
|
219 |
+
dilation_rate,
|
220 |
+
n_layers,
|
221 |
+
gin_channels=0):
|
222 |
+
super().__init__()
|
223 |
+
self.in_channels = in_channels
|
224 |
+
self.out_channels = out_channels
|
225 |
+
self.hidden_channels = hidden_channels
|
226 |
+
self.kernel_size = kernel_size
|
227 |
+
self.dilation_rate = dilation_rate
|
228 |
+
self.n_layers = n_layers
|
229 |
+
self.gin_channels = gin_channels
|
230 |
+
|
231 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
232 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
233 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
234 |
+
|
235 |
+
def forward(self, x, x_lengths, g=None):
|
236 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
237 |
+
x = self.pre(x) * x_mask
|
238 |
+
x = self.enc(x, x_mask, g=g)
|
239 |
+
stats = self.proj(x) * x_mask
|
240 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
241 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
242 |
+
return z, m, logs, x_mask
|
243 |
+
|
244 |
+
|
245 |
+
class Generator(torch.nn.Module):
|
246 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
247 |
+
super(Generator, self).__init__()
|
248 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
249 |
+
self.num_upsamples = len(upsample_rates)
|
250 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
251 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
252 |
+
|
253 |
+
self.ups = nn.ModuleList()
|
254 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
255 |
+
self.ups.append(weight_norm(
|
256 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
257 |
+
k, u, padding=(k-u)//2)))
|
258 |
+
|
259 |
+
self.resblocks = nn.ModuleList()
|
260 |
+
for i in range(len(self.ups)):
|
261 |
+
ch = upsample_initial_channel//(2**(i+1))
|
262 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
263 |
+
self.resblocks.append(resblock(ch, k, d))
|
264 |
+
|
265 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
266 |
+
self.ups.apply(init_weights)
|
267 |
+
|
268 |
+
if gin_channels != 0:
|
269 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
270 |
+
|
271 |
+
def forward(self, x, g=None):
|
272 |
+
x = self.conv_pre(x)
|
273 |
+
if g is not None:
|
274 |
+
x = x + self.cond(g)
|
275 |
+
|
276 |
+
for i in range(self.num_upsamples):
|
277 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
278 |
+
x = self.ups[i](x)
|
279 |
+
xs = None
|
280 |
+
for j in range(self.num_kernels):
|
281 |
+
if xs is None:
|
282 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
283 |
+
else:
|
284 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
285 |
+
x = xs / self.num_kernels
|
286 |
+
x = F.leaky_relu(x)
|
287 |
+
x = self.conv_post(x)
|
288 |
+
x = torch.tanh(x)
|
289 |
+
|
290 |
+
return x
|
291 |
+
|
292 |
+
def remove_weight_norm(self):
|
293 |
+
print('Removing weight norm...')
|
294 |
+
for l in self.ups:
|
295 |
+
remove_weight_norm(l)
|
296 |
+
for l in self.resblocks:
|
297 |
+
l.remove_weight_norm()
|
298 |
+
|
299 |
+
|
300 |
+
class DiscriminatorP(torch.nn.Module):
|
301 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
302 |
+
super(DiscriminatorP, self).__init__()
|
303 |
+
self.period = period
|
304 |
+
self.use_spectral_norm = use_spectral_norm
|
305 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
306 |
+
self.convs = nn.ModuleList([
|
307 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
308 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
309 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
311 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
312 |
+
])
|
313 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
314 |
+
|
315 |
+
def forward(self, x):
|
316 |
+
fmap = []
|
317 |
+
|
318 |
+
# 1d to 2d
|
319 |
+
b, c, t = x.shape
|
320 |
+
if t % self.period != 0: # pad first
|
321 |
+
n_pad = self.period - (t % self.period)
|
322 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
323 |
+
t = t + n_pad
|
324 |
+
x = x.view(b, c, t // self.period, self.period)
|
325 |
+
|
326 |
+
for l in self.convs:
|
327 |
+
x = l(x)
|
328 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
329 |
+
fmap.append(x)
|
330 |
+
x = self.conv_post(x)
|
331 |
+
fmap.append(x)
|
332 |
+
x = torch.flatten(x, 1, -1)
|
333 |
+
|
334 |
+
return x, fmap
|
335 |
+
|
336 |
+
|
337 |
+
class DiscriminatorS(torch.nn.Module):
|
338 |
+
def __init__(self, use_spectral_norm=False):
|
339 |
+
super(DiscriminatorS, self).__init__()
|
340 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
341 |
+
self.convs = nn.ModuleList([
|
342 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
343 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
344 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
345 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
346 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
347 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
348 |
+
])
|
349 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
350 |
+
|
351 |
+
def forward(self, x):
|
352 |
+
fmap = []
|
353 |
+
|
354 |
+
for l in self.convs:
|
355 |
+
x = l(x)
|
356 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
357 |
+
fmap.append(x)
|
358 |
+
x = self.conv_post(x)
|
359 |
+
fmap.append(x)
|
360 |
+
x = torch.flatten(x, 1, -1)
|
361 |
+
|
362 |
+
return x, fmap
|
363 |
+
|
364 |
+
|
365 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
366 |
+
def __init__(self, use_spectral_norm=False):
|
367 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
368 |
+
periods = [2,3,5,7,11]
|
369 |
+
|
370 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
371 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
372 |
+
self.discriminators = nn.ModuleList(discs)
|
373 |
+
|
374 |
+
def forward(self, y, y_hat):
|
375 |
+
y_d_rs = []
|
376 |
+
y_d_gs = []
|
377 |
+
fmap_rs = []
|
378 |
+
fmap_gs = []
|
379 |
+
for i, d in enumerate(self.discriminators):
|
380 |
+
y_d_r, fmap_r = d(y)
|
381 |
+
y_d_g, fmap_g = d(y_hat)
|
382 |
+
y_d_rs.append(y_d_r)
|
383 |
+
y_d_gs.append(y_d_g)
|
384 |
+
fmap_rs.append(fmap_r)
|
385 |
+
fmap_gs.append(fmap_g)
|
386 |
+
|
387 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
class SynthesizerTrn(nn.Module):
|
392 |
+
"""
|
393 |
+
Synthesizer for Training
|
394 |
+
"""
|
395 |
+
|
396 |
+
def __init__(self,
|
397 |
+
n_vocab,
|
398 |
+
spec_channels,
|
399 |
+
segment_size,
|
400 |
+
inter_channels,
|
401 |
+
hidden_channels,
|
402 |
+
filter_channels,
|
403 |
+
n_heads,
|
404 |
+
n_layers,
|
405 |
+
kernel_size,
|
406 |
+
p_dropout,
|
407 |
+
resblock,
|
408 |
+
resblock_kernel_sizes,
|
409 |
+
resblock_dilation_sizes,
|
410 |
+
upsample_rates,
|
411 |
+
upsample_initial_channel,
|
412 |
+
upsample_kernel_sizes,
|
413 |
+
n_speakers=0,
|
414 |
+
gin_channels=0,
|
415 |
+
use_sdp=True,
|
416 |
+
**kwargs):
|
417 |
+
|
418 |
+
super().__init__()
|
419 |
+
self.n_vocab = n_vocab
|
420 |
+
self.spec_channels = spec_channels
|
421 |
+
self.inter_channels = inter_channels
|
422 |
+
self.hidden_channels = hidden_channels
|
423 |
+
self.filter_channels = filter_channels
|
424 |
+
self.n_heads = n_heads
|
425 |
+
self.n_layers = n_layers
|
426 |
+
self.kernel_size = kernel_size
|
427 |
+
self.p_dropout = p_dropout
|
428 |
+
self.resblock = resblock
|
429 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
430 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
431 |
+
self.upsample_rates = upsample_rates
|
432 |
+
self.upsample_initial_channel = upsample_initial_channel
|
433 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
434 |
+
self.segment_size = segment_size
|
435 |
+
self.n_speakers = n_speakers
|
436 |
+
self.gin_channels = gin_channels
|
437 |
+
|
438 |
+
self.use_sdp = use_sdp
|
439 |
+
|
440 |
+
self.enc_p = TextEncoder(n_vocab,
|
441 |
+
inter_channels,
|
442 |
+
hidden_channels,
|
443 |
+
filter_channels,
|
444 |
+
n_heads,
|
445 |
+
n_layers,
|
446 |
+
kernel_size,
|
447 |
+
p_dropout)
|
448 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
449 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
450 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
451 |
+
|
452 |
+
if use_sdp:
|
453 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
454 |
+
else:
|
455 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
456 |
+
|
457 |
+
if n_speakers > 1:
|
458 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
459 |
+
|
460 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
461 |
+
|
462 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
463 |
+
if self.n_speakers > 0:
|
464 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
465 |
+
else:
|
466 |
+
g = None
|
467 |
+
|
468 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
469 |
+
z_p = self.flow(z, y_mask, g=g)
|
470 |
+
|
471 |
+
with torch.no_grad():
|
472 |
+
# negative cross-entropy
|
473 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
474 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
475 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
476 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
477 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
478 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
479 |
+
|
480 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
481 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
482 |
+
|
483 |
+
w = attn.sum(2)
|
484 |
+
if self.use_sdp:
|
485 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
486 |
+
l_length = l_length / torch.sum(x_mask)
|
487 |
+
else:
|
488 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
489 |
+
logw = self.dp(x, x_mask, g=g)
|
490 |
+
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
491 |
+
|
492 |
+
# expand prior
|
493 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
494 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
495 |
+
|
496 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
497 |
+
o = self.dec(z_slice, g=g)
|
498 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
499 |
+
|
500 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
501 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
502 |
+
if self.n_speakers > 0:
|
503 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
504 |
+
else:
|
505 |
+
g = None
|
506 |
+
|
507 |
+
if self.use_sdp:
|
508 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
509 |
+
else:
|
510 |
+
logw = self.dp(x, x_mask, g=g)
|
511 |
+
w = torch.exp(logw) * x_mask * length_scale
|
512 |
+
w_ceil = torch.ceil(w)
|
513 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
514 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
515 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
516 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
517 |
+
|
518 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
519 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
520 |
+
|
521 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
522 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
523 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
524 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
525 |
+
|
526 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
527 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
528 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
529 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
530 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
531 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
532 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
533 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
534 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
535 |
+
|
modules.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from commons import init_weights, get_padding
|
11 |
+
from transforms import piecewise_rational_quadratic_transform
|
12 |
+
|
13 |
+
|
14 |
+
LRELU_SLOPE = 0.1
|
15 |
+
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, channels, eps=1e-5):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.eps = eps
|
22 |
+
|
23 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
24 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = x.transpose(1, -1)
|
28 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
29 |
+
return x.transpose(1, -1)
|
30 |
+
|
31 |
+
|
32 |
+
class ConvReluNorm(nn.Module):
|
33 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
34 |
+
super().__init__()
|
35 |
+
self.in_channels = in_channels
|
36 |
+
self.hidden_channels = hidden_channels
|
37 |
+
self.out_channels = out_channels
|
38 |
+
self.kernel_size = kernel_size
|
39 |
+
self.n_layers = n_layers
|
40 |
+
self.p_dropout = p_dropout
|
41 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
42 |
+
|
43 |
+
self.conv_layers = nn.ModuleList()
|
44 |
+
self.norm_layers = nn.ModuleList()
|
45 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
46 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
47 |
+
self.relu_drop = nn.Sequential(
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.Dropout(p_dropout))
|
50 |
+
for _ in range(n_layers-1):
|
51 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
52 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
53 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
54 |
+
self.proj.weight.data.zero_()
|
55 |
+
self.proj.bias.data.zero_()
|
56 |
+
|
57 |
+
def forward(self, x, x_mask):
|
58 |
+
x_org = x
|
59 |
+
for i in range(self.n_layers):
|
60 |
+
x = self.conv_layers[i](x * x_mask)
|
61 |
+
x = self.norm_layers[i](x)
|
62 |
+
x = self.relu_drop(x)
|
63 |
+
x = x_org + self.proj(x)
|
64 |
+
return x * x_mask
|
65 |
+
|
66 |
+
|
67 |
+
class DDSConv(nn.Module):
|
68 |
+
"""
|
69 |
+
Dialted and Depth-Separable Convolution
|
70 |
+
"""
|
71 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
72 |
+
super().__init__()
|
73 |
+
self.channels = channels
|
74 |
+
self.kernel_size = kernel_size
|
75 |
+
self.n_layers = n_layers
|
76 |
+
self.p_dropout = p_dropout
|
77 |
+
|
78 |
+
self.drop = nn.Dropout(p_dropout)
|
79 |
+
self.convs_sep = nn.ModuleList()
|
80 |
+
self.convs_1x1 = nn.ModuleList()
|
81 |
+
self.norms_1 = nn.ModuleList()
|
82 |
+
self.norms_2 = nn.ModuleList()
|
83 |
+
for i in range(n_layers):
|
84 |
+
dilation = kernel_size ** i
|
85 |
+
padding = (kernel_size * dilation - dilation) // 2
|
86 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
87 |
+
groups=channels, dilation=dilation, padding=padding
|
88 |
+
))
|
89 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
90 |
+
self.norms_1.append(LayerNorm(channels))
|
91 |
+
self.norms_2.append(LayerNorm(channels))
|
92 |
+
|
93 |
+
def forward(self, x, x_mask, g=None):
|
94 |
+
if g is not None:
|
95 |
+
x = x + g
|
96 |
+
for i in range(self.n_layers):
|
97 |
+
y = self.convs_sep[i](x * x_mask)
|
98 |
+
y = self.norms_1[i](y)
|
99 |
+
y = F.gelu(y)
|
100 |
+
y = self.convs_1x1[i](y)
|
101 |
+
y = self.norms_2[i](y)
|
102 |
+
y = F.gelu(y)
|
103 |
+
y = self.drop(y)
|
104 |
+
x = x + y
|
105 |
+
return x * x_mask
|
106 |
+
|
107 |
+
|
108 |
+
class WN(torch.nn.Module):
|
109 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
110 |
+
super(WN, self).__init__()
|
111 |
+
assert(kernel_size % 2 == 1)
|
112 |
+
self.hidden_channels =hidden_channels
|
113 |
+
self.kernel_size = kernel_size,
|
114 |
+
self.dilation_rate = dilation_rate
|
115 |
+
self.n_layers = n_layers
|
116 |
+
self.gin_channels = gin_channels
|
117 |
+
self.p_dropout = p_dropout
|
118 |
+
|
119 |
+
self.in_layers = torch.nn.ModuleList()
|
120 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
121 |
+
self.drop = nn.Dropout(p_dropout)
|
122 |
+
|
123 |
+
if gin_channels != 0:
|
124 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
125 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
126 |
+
|
127 |
+
for i in range(n_layers):
|
128 |
+
dilation = dilation_rate ** i
|
129 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
130 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
131 |
+
dilation=dilation, padding=padding)
|
132 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
133 |
+
self.in_layers.append(in_layer)
|
134 |
+
|
135 |
+
# last one is not necessary
|
136 |
+
if i < n_layers - 1:
|
137 |
+
res_skip_channels = 2 * hidden_channels
|
138 |
+
else:
|
139 |
+
res_skip_channels = hidden_channels
|
140 |
+
|
141 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
142 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
143 |
+
self.res_skip_layers.append(res_skip_layer)
|
144 |
+
|
145 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
146 |
+
output = torch.zeros_like(x)
|
147 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
148 |
+
|
149 |
+
if g is not None:
|
150 |
+
g = self.cond_layer(g)
|
151 |
+
|
152 |
+
for i in range(self.n_layers):
|
153 |
+
x_in = self.in_layers[i](x)
|
154 |
+
if g is not None:
|
155 |
+
cond_offset = i * 2 * self.hidden_channels
|
156 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
157 |
+
else:
|
158 |
+
g_l = torch.zeros_like(x_in)
|
159 |
+
|
160 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
161 |
+
x_in,
|
162 |
+
g_l,
|
163 |
+
n_channels_tensor)
|
164 |
+
acts = self.drop(acts)
|
165 |
+
|
166 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
167 |
+
if i < self.n_layers - 1:
|
168 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
169 |
+
x = (x + res_acts) * x_mask
|
170 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
171 |
+
else:
|
172 |
+
output = output + res_skip_acts
|
173 |
+
return output * x_mask
|
174 |
+
|
175 |
+
def remove_weight_norm(self):
|
176 |
+
if self.gin_channels != 0:
|
177 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
178 |
+
for l in self.in_layers:
|
179 |
+
torch.nn.utils.remove_weight_norm(l)
|
180 |
+
for l in self.res_skip_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
+
|
183 |
+
|
184 |
+
class ResBlock1(torch.nn.Module):
|
185 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
186 |
+
super(ResBlock1, self).__init__()
|
187 |
+
self.convs1 = nn.ModuleList([
|
188 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
189 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
190 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
191 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
192 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
193 |
+
padding=get_padding(kernel_size, dilation[2])))
|
194 |
+
])
|
195 |
+
self.convs1.apply(init_weights)
|
196 |
+
|
197 |
+
self.convs2 = nn.ModuleList([
|
198 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
199 |
+
padding=get_padding(kernel_size, 1))),
|
200 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
201 |
+
padding=get_padding(kernel_size, 1))),
|
202 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
203 |
+
padding=get_padding(kernel_size, 1)))
|
204 |
+
])
|
205 |
+
self.convs2.apply(init_weights)
|
206 |
+
|
207 |
+
def forward(self, x, x_mask=None):
|
208 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
209 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
210 |
+
if x_mask is not None:
|
211 |
+
xt = xt * x_mask
|
212 |
+
xt = c1(xt)
|
213 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
214 |
+
if x_mask is not None:
|
215 |
+
xt = xt * x_mask
|
216 |
+
xt = c2(xt)
|
217 |
+
x = xt + x
|
218 |
+
if x_mask is not None:
|
219 |
+
x = x * x_mask
|
220 |
+
return x
|
221 |
+
|
222 |
+
def remove_weight_norm(self):
|
223 |
+
for l in self.convs1:
|
224 |
+
remove_weight_norm(l)
|
225 |
+
for l in self.convs2:
|
226 |
+
remove_weight_norm(l)
|
227 |
+
|
228 |
+
|
229 |
+
class ResBlock2(torch.nn.Module):
|
230 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
231 |
+
super(ResBlock2, self).__init__()
|
232 |
+
self.convs = nn.ModuleList([
|
233 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
234 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
235 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
236 |
+
padding=get_padding(kernel_size, dilation[1])))
|
237 |
+
])
|
238 |
+
self.convs.apply(init_weights)
|
239 |
+
|
240 |
+
def forward(self, x, x_mask=None):
|
241 |
+
for c in self.convs:
|
242 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
243 |
+
if x_mask is not None:
|
244 |
+
xt = xt * x_mask
|
245 |
+
xt = c(xt)
|
246 |
+
x = xt + x
|
247 |
+
if x_mask is not None:
|
248 |
+
x = x * x_mask
|
249 |
+
return x
|
250 |
+
|
251 |
+
def remove_weight_norm(self):
|
252 |
+
for l in self.convs:
|
253 |
+
remove_weight_norm(l)
|
254 |
+
|
255 |
+
|
256 |
+
class Log(nn.Module):
|
257 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
258 |
+
if not reverse:
|
259 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
260 |
+
logdet = torch.sum(-y, [1, 2])
|
261 |
+
return y, logdet
|
262 |
+
else:
|
263 |
+
x = torch.exp(x) * x_mask
|
264 |
+
return x
|
265 |
+
|
266 |
+
|
267 |
+
class Flip(nn.Module):
|
268 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
269 |
+
x = torch.flip(x, [1])
|
270 |
+
if not reverse:
|
271 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
272 |
+
return x, logdet
|
273 |
+
else:
|
274 |
+
return x
|
275 |
+
|
276 |
+
|
277 |
+
class ElementwiseAffine(nn.Module):
|
278 |
+
def __init__(self, channels):
|
279 |
+
super().__init__()
|
280 |
+
self.channels = channels
|
281 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
282 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
283 |
+
|
284 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
285 |
+
if not reverse:
|
286 |
+
y = self.m + torch.exp(self.logs) * x
|
287 |
+
y = y * x_mask
|
288 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
289 |
+
return y, logdet
|
290 |
+
else:
|
291 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
292 |
+
return x
|
293 |
+
|
294 |
+
|
295 |
+
class ResidualCouplingLayer(nn.Module):
|
296 |
+
def __init__(self,
|
297 |
+
channels,
|
298 |
+
hidden_channels,
|
299 |
+
kernel_size,
|
300 |
+
dilation_rate,
|
301 |
+
n_layers,
|
302 |
+
p_dropout=0,
|
303 |
+
gin_channels=0,
|
304 |
+
mean_only=False):
|
305 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
306 |
+
super().__init__()
|
307 |
+
self.channels = channels
|
308 |
+
self.hidden_channels = hidden_channels
|
309 |
+
self.kernel_size = kernel_size
|
310 |
+
self.dilation_rate = dilation_rate
|
311 |
+
self.n_layers = n_layers
|
312 |
+
self.half_channels = channels // 2
|
313 |
+
self.mean_only = mean_only
|
314 |
+
|
315 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
316 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
317 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
318 |
+
self.post.weight.data.zero_()
|
319 |
+
self.post.bias.data.zero_()
|
320 |
+
|
321 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
322 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
323 |
+
h = self.pre(x0) * x_mask
|
324 |
+
h = self.enc(h, x_mask, g=g)
|
325 |
+
stats = self.post(h) * x_mask
|
326 |
+
if not self.mean_only:
|
327 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
328 |
+
else:
|
329 |
+
m = stats
|
330 |
+
logs = torch.zeros_like(m)
|
331 |
+
|
332 |
+
if not reverse:
|
333 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
334 |
+
x = torch.cat([x0, x1], 1)
|
335 |
+
logdet = torch.sum(logs, [1,2])
|
336 |
+
return x, logdet
|
337 |
+
else:
|
338 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
339 |
+
x = torch.cat([x0, x1], 1)
|
340 |
+
return x
|
341 |
+
|
342 |
+
|
343 |
+
class ConvFlow(nn.Module):
|
344 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
345 |
+
super().__init__()
|
346 |
+
self.in_channels = in_channels
|
347 |
+
self.filter_channels = filter_channels
|
348 |
+
self.kernel_size = kernel_size
|
349 |
+
self.n_layers = n_layers
|
350 |
+
self.num_bins = num_bins
|
351 |
+
self.tail_bound = tail_bound
|
352 |
+
self.half_channels = in_channels // 2
|
353 |
+
|
354 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
355 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
356 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
357 |
+
self.proj.weight.data.zero_()
|
358 |
+
self.proj.bias.data.zero_()
|
359 |
+
|
360 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
361 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
362 |
+
h = self.pre(x0)
|
363 |
+
h = self.convs(h, x_mask, g=g)
|
364 |
+
h = self.proj(h) * x_mask
|
365 |
+
|
366 |
+
b, c, t = x0.shape
|
367 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
368 |
+
|
369 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
370 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
371 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
372 |
+
|
373 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
374 |
+
unnormalized_widths,
|
375 |
+
unnormalized_heights,
|
376 |
+
unnormalized_derivatives,
|
377 |
+
inverse=reverse,
|
378 |
+
tails='linear',
|
379 |
+
tail_bound=self.tail_bound
|
380 |
+
)
|
381 |
+
|
382 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
383 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
384 |
+
if not reverse:
|
385 |
+
return x, logdet
|
386 |
+
else:
|
387 |
+
return x
|
monotonic_align/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import zeros, int32, float32
|
2 |
+
from torch import from_numpy
|
3 |
+
|
4 |
+
from .core import maximum_path_jit
|
5 |
+
|
6 |
+
def maximum_path(neg_cent, mask):
|
7 |
+
""" numba optimized version.
|
8 |
+
neg_cent: [b, t_t, t_s]
|
9 |
+
mask: [b, t_t, t_s]
|
10 |
+
"""
|
11 |
+
device = neg_cent.device
|
12 |
+
dtype = neg_cent.dtype
|
13 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(float32)
|
14 |
+
path = zeros(neg_cent.shape, dtype=int32)
|
15 |
+
|
16 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
|
17 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
|
18 |
+
maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
|
19 |
+
return from_numpy(path).to(device=device, dtype=dtype)
|
monotonic_align/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (823 Bytes). View file
|
|
monotonic_align/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (795 Bytes). View file
|
|
monotonic_align/__pycache__/core.cpython-37.pyc
ADDED
Binary file (968 Bytes). View file
|
|
monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.exp
ADDED
Binary file (740 Bytes). View file
|
|
monotonic_align/build/temp.win-amd64-3.7/Release/core.cp37-win_amd64.lib
ADDED
Binary file (1.94 kB). View file
|
|
monotonic_align/build/temp.win-amd64-3.7/Release/core.obj
ADDED
Binary file (864 kB). View file
|
|
monotonic_align/core.c
ADDED
The diff for this file is too large to render.
See raw diff
|
|
monotonic_align/core.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numba
|
2 |
+
|
3 |
+
|
4 |
+
@numba.jit(numba.void(numba.int32[:,:,::1], numba.float32[:,:,::1], numba.int32[::1], numba.int32[::1]), nopython=True, nogil=True)
|
5 |
+
def maximum_path_jit(paths, values, t_ys, t_xs):
|
6 |
+
b = paths.shape[0]
|
7 |
+
max_neg_val=-1e9
|
8 |
+
for i in range(int(b)):
|
9 |
+
path = paths[i]
|
10 |
+
value = values[i]
|
11 |
+
t_y = t_ys[i]
|
12 |
+
t_x = t_xs[i]
|
13 |
+
|
14 |
+
v_prev = v_cur = 0.0
|
15 |
+
index = t_x - 1
|
16 |
+
|
17 |
+
for y in range(t_y):
|
18 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
19 |
+
if x == y:
|
20 |
+
v_cur = max_neg_val
|
21 |
+
else:
|
22 |
+
v_cur = value[y-1, x]
|
23 |
+
if x == 0:
|
24 |
+
if y == 0:
|
25 |
+
v_prev = 0.
|
26 |
+
else:
|
27 |
+
v_prev = max_neg_val
|
28 |
+
else:
|
29 |
+
v_prev = value[y-1, x-1]
|
30 |
+
value[y, x] += max(v_prev, v_cur)
|
31 |
+
|
32 |
+
for y in range(t_y - 1, -1, -1):
|
33 |
+
path[y, index] = 1
|
34 |
+
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
|
35 |
+
index = index - 1
|
monotonic_align/monotonic_align/core.cp37-win_amd64.pyd
ADDED
Binary file (151 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
librosa
|
2 |
+
matplotlib
|
3 |
+
numpy
|
4 |
+
scipy
|
5 |
+
tensorboard
|
6 |
+
torch
|
7 |
+
torchvision
|
8 |
+
cn2an
|
9 |
+
opencc
|
10 |
+
transformers>=4.26.1
|
11 |
+
cpm_kernels
|
12 |
+
icetk
|
13 |
+
TTS
|
14 |
+
speechbrain
|
15 |
+
torchaudio
|
16 |
+
denoiser==0.1.5
|
shanghainese_script.txt
ADDED
@@ -0,0 +1,2051 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
侬是公派出去,还是因私出国?
|
2 |
+
侬要交几张照片,填好几张表格,办好签证。
|
3 |
+
签证到现在还呒没拿到,我真是急煞快!
|
4 |
+
请侬拿护照出示拨我看看,还有入境表格填好了𠲎?
|
5 |
+
侬辣上海要蹲多少辰光?
|
6 |
+
侬准备从啥个地方出境?
|
7 |
+
侬有啥个物事需要向海关申报𠲎?
|
8 |
+
请侬从箇𡍲走,埃面是检查台,检查行李个地方。
|
9 |
+
亲爱的,阿拉结婚好𠲎?
|
10 |
+
我同意,侬看啥辰光结婚啊?
|
11 |
+
阿拉选只好日节。
|
12 |
+
结婚是一生当中个大事体。
|
13 |
+
我想办了体面一眼。
|
14 |
+
办中式个。
|
15 |
+
摆老多桌,闹忙眼。
|
16 |
+
要末西式个?
|
17 |
+
拖地婚纱,辣辣教堂结婚。
|
18 |
+
要末旅行结婚?
|
19 |
+
到国外去度蜜月,过两人世界。
|
20 |
+
我没办法决定。
|
21 |
+
问问看爷娘帮亲眷个意见。
|
22 |
+
阿拉马上去寻伊拉。
|
23 |
+
阿拉两个人真个老配个。
|
24 |
+
新婚夫妻。
|
25 |
+
结婚以后,㑚要小人𠲎?
|
26 |
+
要个,阿拉想要一个小人。
|
27 |
+
欢喜男囡头还是女小人啊?
|
28 |
+
男女侪一样个。
|
29 |
+
葛末㑚要多补补营养。
|
30 |
+
保持健康是最关键个事体。
|
31 |
+
今朝天气哪能?
|
32 |
+
天气预报讲今朝是好天气。
|
33 |
+
温度哪能?
|
34 |
+
勿冷也勿热。
|
35 |
+
是阳光明媚个春天。
|
36 |
+
前两天刮大风,天气真冷。
|
37 |
+
上海冬天冷风飕飕个。
|
38 |
+
会得落雪𠲎?
|
39 |
+
难般会得落雪。
|
40 |
+
今年就落了一场大雪。
|
41 |
+
上海个春天,天气晴朗。
|
42 |
+
一天比一天暖热。
|
43 |
+
气温升得老快个。
|
44 |
+
零上10度。
|
45 |
+
勿过天气变化老大个。
|
46 |
+
明朝会得哪能?
|
47 |
+
听听今朝个天气预报好了。
|
48 |
+
3月16号,阴,有小雨。
|
49 |
+
会得落雨𠲎。
|
50 |
+
晚春个辰光经常要落雨个。
|
51 |
+
春天风也老大个。
|
52 |
+
有辰光会得刮四五级大风。
|
53 |
+
夏天呢?
|
54 |
+
天气老热个。
|
55 |
+
夏天个平均温度是28度左右。
|
56 |
+
勿过最热个辰光气温要到39度左右了。
|
57 |
+
箇𡍲天气老热个。
|
58 |
+
太阳辣花花个。
|
59 |
+
热得要死。
|
60 |
+
勿过夏天一过,就到上海最好个季节。
|
61 |
+
秋天,天气老好个。
|
62 |
+
温度老适宜个。
|
63 |
+
天老高,老蓝个。
|
64 |
+
微风吹吹,秋高气爽。
|
65 |
+
勿冷勿热。
|
66 |
+
真是忒适宜了。
|
67 |
+
秋天是成熟个季节。
|
68 |
+
秋天是丰收个季节。
|
69 |
+
秋天交关多姿多彩。
|
70 |
+
到处侪老漂亮个。
|
71 |
+
我认为秋天是上海最好看个季节。
|
72 |
+
我欢喜上海个秋天。
|
73 |
+
我老好个,侬呢?
|
74 |
+
我也老好个。
|
75 |
+
侬最近哪能?
|
76 |
+
侪好𠲎?
|
77 |
+
侪蛮好,谢谢侬。
|
78 |
+
屋里向人好𠲎?
|
79 |
+
脱平常一样个。
|
80 |
+
有啥好事体𠲎?
|
81 |
+
没啥特别个。
|
82 |
+
㑚爸爸姆妈呢,伊拉好𠲎?
|
83 |
+
伊拉蛮好,老好个!
|
84 |
+
小人好𠲎?
|
85 |
+
一般,勿是老好。
|
86 |
+
现在辣海准备高考。
|
87 |
+
代我帮㑚屋里向问好。
|
88 |
+
最近工作哪能?
|
89 |
+
工作老忙个,还要自学英文
|
90 |
+
侬呢,过了好𠲎?
|
91 |
+
勿错,一切顺利。
|
92 |
+
侬身体哪能?
|
93 |
+
我老好个!
|
94 |
+
现在是几月份?
|
95 |
+
现在是三月份。
|
96 |
+
今朝是几月几号?
|
97 |
+
今朝是三月10号。
|
98 |
+
马上就要三月15号了。
|
99 |
+
“3.15”是消费者权益日。
|
100 |
+
下个号头是几月?
|
101 |
+
下个月是四月。
|
102 |
+
今朝夜快头请侬帮我拿箇眼DVD碟片带回去。
|
103 |
+
侬到厨房间里一把榔头脱我拿来。
|
104 |
+
箇两封信侬帮我寄脱好𠲎?
|
105 |
+
请侬来帮我看看,抽水马桶坏脱了𠲎?
|
106 |
+
我索性帮侬拿应用软件统统调脱伊。
|
107 |
+
灯开勿亮了,侬帮我来看看好𠲎?
|
108 |
+
辣末一趟请侬唻,侬要脱我顶真眼做做好!
|
109 |
+
我谢谢侬帮帮忙,脱我灯关关脱,我想睏觉了。
|
110 |
+
侬窗门开开,拿空调关脱伊!
|
111 |
+
要是还有别个事体要我帮忙,就打电话拨我。
|
112 |
+
早,吃早饭了。
|
113 |
+
我勿吃,我到单位食堂去吃。
|
114 |
+
侬早饭吃过𠲎?
|
115 |
+
还没吃。
|
116 |
+
侬欢喜吃啥?
|
117 |
+
我欢喜吃面包,喝牛奶。
|
118 |
+
吃得饱𠲎?
|
119 |
+
可以个,我早饭吃了勿多个。
|
120 |
+
我吃了老多个。
|
121 |
+
我要吃一碗豆浆,一根油条,一只荷包蛋。
|
122 |
+
我已经饿了
|
123 |
+
中饭阿拉吃中餐还是西餐?
|
124 |
+
阿拉就吃眼快餐好了。
|
125 |
+
葛末阿拉就去吃“肯德基”。
|
126 |
+
请拨我两只汉堡。
|
127 |
+
请拨我一杯热咖啡。
|
128 |
+
我要一份冰激凌。
|
129 |
+
我买几张邮票。
|
130 |
+
我想寄封挂号信。
|
131 |
+
箇封信超重了。
|
132 |
+
地址填清爽。
|
133 |
+
请侬填好邮政编码。
|
134 |
+
寄到北京要多少辰光?
|
135 |
+
大概一个礼拜。
|
136 |
+
现在个商店,越造越大。
|
137 |
+
上海个正大广场老大个。
|
138 |
+
礼拜天阿拉去兜兜。
|
139 |
+
可以买点物事。
|
140 |
+
侬想买啥?
|
141 |
+
侬穿啥尺寸个?
|
142 |
+
侬欢喜啥颜色个?
|
143 |
+
箇件衣裳侬穿了老好看个。
|
144 |
+
我勿欢喜箇只颜色。
|
145 |
+
我要件黑颜色个。
|
146 |
+
侬穿了试试看。
|
147 |
+
我帮女朋友买件衣裳。
|
148 |
+
今年最流行箇种样子帮颜色了。
|
149 |
+
穿上去老时髦,老好看个。
|
150 |
+
试衣间辣辣阿里𡍲?
|
151 |
+
我就要箇件了。
|
152 |
+
侬想买鞋子𠲎?
|
153 |
+
阿拉店里有老多名牌皮鞋。
|
154 |
+
侬穿啥尺寸个鞋子?
|
155 |
+
箇双鞋子是名牌。
|
156 |
+
我可以试试看𠲎?
|
157 |
+
箇鞋子太紧了。
|
158 |
+
侬看箇双鞋子来三𠲎?
|
159 |
+
42码个,就要箇双。
|
160 |
+
今朝夜里侬想吃点啥?
|
161 |
+
阿拉去吃南翔小笼包。
|
162 |
+
我觉得忒油腻了,勿想吃。
|
163 |
+
阿拉去吃眼清淡个菜好了。
|
164 |
+
���末阿拉去吃新素代。
|
165 |
+
㑚几位?
|
166 |
+
阿拉五个人。
|
167 |
+
今朝有点啥个特色菜?
|
168 |
+
拨㑚份菜单看看。
|
169 |
+
㑚要吃点啥老酒?
|
170 |
+
阿拉勿吃酒个。
|
171 |
+
来份三鲜汤。
|
172 |
+
主食吃啥?
|
173 |
+
阿拉要三碗饭。
|
174 |
+
还要别个𠲎?
|
175 |
+
我想拿眼钞票。
|
176 |
+
请到自动取款机。
|
177 |
+
勿来三,我还要调点零钞票。
|
178 |
+
请输密码。
|
179 |
+
侬要拿多少钞票。
|
180 |
+
我拿500块整个。
|
181 |
+
还有,10块头5张,5块头10张。
|
182 |
+
嗨!差头。
|
183 |
+
侬到阿里𡍲?
|
184 |
+
我去机场。
|
185 |
+
请上车,拿行李摆辣后备箱。
|
186 |
+
从箇𡍲到机场有多少公里?
|
187 |
+
大概40公里。
|
188 |
+
车费多少?
|
189 |
+
每公里人民币2块4角,计价器会得打发票个。
|
190 |
+
路浪向堵车𠲎?
|
191 |
+
会得堵个,勿过50分钟可以到机场了。
|
192 |
+
拨侬100块。
|
193 |
+
明朝是我个生日。
|
194 |
+
我想请侬参加我个生日聚会。
|
195 |
+
侬来好𠲎?
|
196 |
+
我非常高兴接受侬个邀请。
|
197 |
+
长远勿见,侬最近好𠲎?
|
198 |
+
我蛮好个,侬乃,刚刚从乡下头回来啊?
|
199 |
+
是个,我也蛮好。
|
200 |
+
哪能侬现在上海言话讲了介好?
|
201 |
+
是𠲎,我之前一段辰光一直辣辣网浪向学上海言话。
|
202 |
+
网浪向也好学上海言话啊?
|
203 |
+
是个,我也是听朋友介绍个。
|
204 |
+
是啥网站?
|
205 |
+
是海词网。我天天到伊拉上海言话词典学习,可以在线查单词,听录音,学对话。
|
206 |
+
原来侬有介好个工具帮忙。网址是多少?
|
207 |
+
网址是dict.cn
|
208 |
+
侬要喝啥饮料?
|
209 |
+
我要一杯奶茶。
|
210 |
+
侬欢喜吃点啥?
|
211 |
+
侬可以拨我一眼奶油五香豆。
|
212 |
+
侬欢喜阿里一块?箇块还是埃块?
|
213 |
+
没关系,随便阿里一块。
|
214 |
+
还要多少?
|
215 |
+
还要一眼眼。
|
216 |
+
阿里一只侬欢喜一眼?
|
217 |
+
我一只也勿要。
|
218 |
+
我要搬场快了。
|
219 |
+
我买了徐家汇附近个高层。
|
220 |
+
侬搬个真是好地段,现在大家是吃地段吃房型个。
|
221 |
+
我搬辣十八楼,大房间帮大厅侪朝南。
|
222 |
+
侬个房子得房率高勿高?面积大勿大?
|
223 |
+
三房两厅两卫,建筑面积一百三十六个平方。
|
224 |
+
勿要忒赞噢!是毛坯房还是装修房?
|
225 |
+
毛坯房!现在辣辣请人装修。
|
226 |
+
埃面𡍲个物业管理好勿好?管理费贵𠲎?
|
227 |
+
马马虎虎,侪一般性。
|
228 |
+
侬房子钞票一次性侪付脱了𠲎?
|
229 |
+
我只付了首期房款,其他个侪贷款。
|
230 |
+
麻烦侬了。
|
231 |
+
乃弄得侬今朝吃力煞了!
|
232 |
+
勿搭界个!
|
233 |
+
侬还有啥个事体要我帮忙𠲎?
|
234 |
+
没啥了。
|
235 |
+
我老勿好意思。
|
236 |
+
谢谢侬!
|
237 |
+
谢啥!勿要谢,我没关系个。
|
238 |
+
听讲侬辞职了,为啥?
|
239 |
+
公司勿履行协议。
|
240 |
+
面试个辰光刚好起薪三千块个。
|
241 |
+
三个号头以后,工资四千块。
|
242 |
+
工作多少辰光了?
|
243 |
+
已经六个号头了
|
244 |
+
寻老板谈过𠲎?
|
245 |
+
谈过了,伊老是讲等等、等等。
|
246 |
+
我认为公司违约了。
|
247 |
+
我就辞职了。
|
248 |
+
小姐,侬买化妆品𠲎?
|
249 |
+
我想买瓶香水。
|
250 |
+
箇是法国最好个香水。
|
251 |
+
味道老温馨个。
|
252 |
+
我再看看别个品牌。
|
253 |
+
阿拉有老多品牌拨侬选择。
|
254 |
+
我要报考㑚个职业培训班,啥辰光考试?
|
255 |
+
请侬拿箇张表格填好,考试就辣箇个号头十廿号。
|
256 |
+
假使考取了,要学几个号头?
|
257 |
+
要学三个号头,全部用业余辰光。
|
258 |
+
啥个内容要考?参考书有𠲎?
|
259 |
+
侬看箇张表好唻,高头已经写清爽了。
|
260 |
+
侬今朝下半天有辰光𠲎?
|
261 |
+
我想请侬去参观科技馆。
|
262 |
+
勿好意思,我今朝下半天没辰光。
|
263 |
+
侬明朝有空𠲎?
|
264 |
+
箇周末有空𠲎?
|
265 |
+
我想到侬屋里看侬。
|
266 |
+
大概勿来三。
|
267 |
+
别个辰光来三𠲎?
|
268 |
+
今朝夜里我有空。
|
269 |
+
好个,今朝夜到阿拉一道去看电影。
|
270 |
+
去个辰光叫黄丽一道。
|
271 |
+
阿拉辣海阿里𡍲碰头?
|
272 |
+
侬啥辰光方便?
|
273 |
+
下半天5点钟哪能?
|
274 |
+
电影院,勿见勿散。
|
275 |
+
黄丽,我想到侬屋里看看叫。
|
276 |
+
请带侬先生一道来白相好了。
|
277 |
+
阿拉屋里向个人侪欢迎侬。
|
278 |
+
张阿姨,是我来了。
|
279 |
+
请进来!
|
280 |
+
来,来,坐啊,请坐。
|
281 |
+
没啥好招待侬个。
|
282 |
+
侬要吃咖啡还是要吃茶啊?
|
283 |
+
阿姨勿要客气,倒杯白开水吃吃好了。
|
284 |
+
今朝侬上门来,有眼啥事体啊?
|
285 |
+
我有眼小事体想请侬帮忙。
|
286 |
+
侬是啥辰光来个?
|
287 |
+
我是去年七月份来个。
|
288 |
+
马上要一年了。
|
289 |
+
侬是2006年毕业个𠲎?
|
290 |
+
勿是个,我是2004年毕业个。
|
291 |
+
侬已经工作5年了。
|
292 |
+
是个,快6年了。
|
293 |
+
箇几年我一直努力工作。
|
294 |
+
喂,小李是𠲎?
|
295 |
+
勿是,侬是啥人?
|
296 |
+
我是刘刚。
|
297 |
+
能帮我叫声小李𠲎?
|
298 |
+
侬等等,伊好像出去了。
|
299 |
+
等伊回来让伊打电话拨我。
|
300 |
+
伊晓得侬电话号头𠲎?
|
301 |
+
侬留留侬个姓名脱电话。
|
302 |
+
我个手机号头是12345678901。
|
303 |
+
好个,我记下来了。
|
304 |
+
过30分钟让伊回电话拨侬。
|
305 |
+
轮到我了,是𠲎?
|
306 |
+
侬坐下来,有啥勿适意?
|
307 |
+
心口头有眼痛咾,饭吃勿落。
|
308 |
+
也是箇𡍲痛?箇个是胃痛。
|
309 |
+
痛了几日了?侬老早胃病有𠲎?
|
310 |
+
痛是痛过歇个,呒没现在介厉害。
|
311 |
+
胃口哪能?想勿想吐?
|
312 |
+
有眼恶心,但是吐勿出来。
|
313 |
+
勿放心末,侬去做只胃镜查一查。
|
314 |
+
箇眼药一天吃三次。
|
315 |
+
饭后药水吃瓶盖头一盖头,药���吃一粒。
|
316 |
+
乃下趟一定要防止着冷,吃饭勿要吃了过头。
|
317 |
+
辣辣箇𡍲茶室里碰头,情调勿推扳。
|
318 |
+
侬要吃啥茶?来壶柠檬红茶喝喝好𠲎?
|
319 |
+
再弄眼瓜子、腰果、杏仁咾啥剥剥。
|
320 |
+
王兄,侬现在辣辣跑啥生意了?
|
321 |
+
箇两日工作我回头脱了,下个月有家独资公司聘我去。
|
322 |
+
老兄有噱头个!勿像我死样怪气个单位里捂辣海。
|
323 |
+
侬应该跳槽,我介绍侬到阿拉连襟个公司去做。
|
324 |
+
侬个艺术细胞太丰富唻,做装潢设计完全来三。
|
325 |
+
帮侬添麻烦了!
|
326 |
+
朋友道里,我讲出了末,就帮忙帮到底。
|
327 |
+
箇𡍲小区绿地面积有多少?
|
328 |
+
占建筑总面积百分之几?
|
329 |
+
公共设施有眼啥?
|
330 |
+
譬如讲,小区健身房、儿童乐园、图书馆咾侪有。
|
331 |
+
小区旁边进出方便𠲎?
|
332 |
+
譬如讲,我要到市中心,有啥车子好乘出去𠲎?
|
333 |
+
箇𡍲要调地铁脱轻轨便当𠲎?
|
334 |
+
我假使要上高架,阿里个路口离箇𡍲最近?
|
335 |
+
箇𡍲周围有勿有小菜场跟大型超市,生活用品买?
|
336 |
+
朝南窗口前头还会得造高楼,𢴳牢阳光帮视线𠲎?
|
337 |
+
周围环境哪能介?静勿静?夜里向吵勿吵?
|
338 |
+
小区安全𠲎?夜里向有照明设施𠲎?
|
339 |
+
对勿起,现在啥辰光了?
|
340 |
+
十点缺十五分。
|
341 |
+
㑚约好来啥辰光碰头个?
|
342 |
+
还有半个钟头,辰光老充裕个。
|
343 |
+
我中浪向十二点半还要到浦东去。
|
344 |
+
夜饭还没好,要到六点半。
|
345 |
+
我辣一个钟头以前就吃了中饭。
|
346 |
+
明朝侬九点钟要到箇𡍲来。
|
347 |
+
伊辣埃面𡍲住了多少辰光了?
|
348 |
+
我等了侬老多辰光了。
|
349 |
+
杨雪,可以约侬出去𠲎?
|
350 |
+
我老欢喜陪侬个。
|
351 |
+
侬长了老帅个。
|
352 |
+
侬也老吸引人个。
|
353 |
+
登山介吃力个。
|
354 |
+
侬爬勿动,我可以背侬个呀。
|
355 |
+
侬别有用心。
|
356 |
+
杨雪,我爱侬。
|
357 |
+
嫁拨我好𠲎。
|
358 |
+
勿来三个,因为我要嫁拨有钞票人个。
|
359 |
+
侬想寻“大款”啊?
|
360 |
+
小张,侬是阿里一年养个?
|
361 |
+
一九八二年养个。
|
362 |
+
侬生日几月几号?
|
363 |
+
十月十八号。侬啥辰光生个?
|
364 |
+
我小侬四个号头。
|
365 |
+
今朝是啥日脚?
|
366 |
+
今朝七月廿五号。
|
367 |
+
今朝礼拜几?
|
368 |
+
明朝正好礼拜天。
|
369 |
+
我医院里住了几个礼拜。
|
370 |
+
侬回到家乡去住几天日脚?
|
371 |
+
上个号头是九月份𠲎?
|
372 |
+
箇个号头是几月份?
|
373 |
+
去年八月份侬辣阿里𡍲?
|
374 |
+
侬是来面试个,是𠲎?
|
375 |
+
是个,我听讲㑚公司需要一个管理人。
|
376 |
+
侬做过箇种工作𠲎?
|
377 |
+
老早没。
|
378 |
+
侬阿里只大学毕业个?
|
379 |
+
我复旦大学毕业个。
|
380 |
+
侬学啥专业个?
|
381 |
+
企业管理。
|
382 |
+
请侬刚刚侬准备将来哪能工作。
|
383 |
+
侬会得用电脑𠲎?
|
384 |
+
侬会得用复印机𠲎?
|
385 |
+
侬还有啥特长?
|
386 |
+
箇是我个简历。
|
387 |
+
侬要求个工资多少?
|
388 |
+
公司决定好了。
|
389 |
+
阿拉有得试用期个。
|
390 |
+
试用期多少辰光?
|
391 |
+
三个号头。
|
392 |
+
我啥辰光可以上班?
|
393 |
+
阿拉会得通知侬个。
|
394 |
+
喂,侬好,我想寻刘先生。
|
395 |
+
请问侬是阿里位?
|
396 |
+
请侬讲响眼。
|
397 |
+
我听勿清爽侬讲言话。
|
398 |
+
我寻刘刚。
|
399 |
+
侬好像打错脱电话了。
|
400 |
+
勿好意思,请帮我转过去来三𠲎?
|
401 |
+
我寻刘刚有急事体。
|
402 |
+
我欢喜侬。
|
403 |
+
侬有文化,大方,漂亮。
|
404 |
+
老可爱个。
|
405 |
+
是𠲎?我也欢喜侬。
|
406 |
+
勿过我勿好帮侬谈朋友。
|
407 |
+
因为我有男朋友了。
|
408 |
+
阿拉两个人感情老好个。
|
409 |
+
阿拉谈了快三年了。
|
410 |
+
箇是伊送拨我个订婚礼物。
|
411 |
+
我帮侬介绍个女朋友好来。
|
412 |
+
好个,侬可以当媒人了。
|
413 |
+
杨雪对侬有意思。
|
414 |
+
伊大概看中侬了。
|
415 |
+
侬可以跟伊表白一下。
|
416 |
+
侬今朝哪能没上班?
|
417 |
+
我被伊拉辞退了。
|
418 |
+
啊,侬为啥被辞退?
|
419 |
+
我今朝帮老板发火了。
|
420 |
+
侬跟老板吵相骂啦?
|
421 |
+
是个,我恨伊。
|
422 |
+
侬箇是自作自受。
|
423 |
+
去帮老板道歉。
|
424 |
+
勿去,伊勿讲道理。
|
425 |
+
老板对阿拉老凶个。
|
426 |
+
我晓得侬会来个!
|
427 |
+
我勿来末啥人来啊?
|
428 |
+
侬真介好啊?
|
429 |
+
我对别人侪勿好,因为侬发调头叫我来讲讲言话。
|
430 |
+
葛末侬频道隔脱伊好唻。
|
431 |
+
我单飞日脚过得厌脱唻!
|
432 |
+
我倒觉着蛮好个。
|
433 |
+
我会得后悔一辈子𠲎?
|
434 |
+
勿谈了!阿拉到周庄去白相好𠲎?
|
435 |
+
伊拉两家头个爱情,已经升了一个台阶。
|
436 |
+
侬除脱箇只专业之外,还有啥特别个爱好𠲎?
|
437 |
+
休息日脚侬看电视以外,还欢喜啥地方去转转?
|
438 |
+
拍照,只勿过是我一项业余爱好。
|
439 |
+
箇套钱币要弄到邪气难个,侬用了多少长个辰光弄到啊?
|
440 |
+
我觉得集邮是一种有益个休闲。
|
441 |
+
我勿欢喜跑出去白相,常庄辣辣屋里向泡壶咖啡。
|
442 |
+
伊好像对音乐剧咾啥老感兴趣个,而且还邪气懂经。
|
443 |
+
我还常庄看上海滑稽,或者一家门围牢仔电视机。
|
444 |
+
搓麻将我难板来来,因为一上年头起来辰光侪搭脱。
|
445 |
+
我一操机就没底个,游戏打打,动画片看看。
|
446 |
+
侬哪能一有空就上网,冲浪灌水打QQ,一个夜头侪勿停个?
|
447 |
+
侬有侬个爱好,我有我个兴趣,关侬啥事体!
|
448 |
+
现在到处有“超市”,一记头可以买交关物事。
|
449 |
+
勿过上海还有勿少小摊��,买物事可以讨价还价。
|
450 |
+
哎,箇眼橘子几钿一斤啊?
|
451 |
+
写辣海十块五斤,我可以卖拨侬十元六斤。
|
452 |
+
我多买眼,好再𠼢一眼𠲎?
|
453 |
+
侬看下头两只介小个。
|
454 |
+
我是统货,侬要拣末,就只好十元五斤。
|
455 |
+
好了好了!就十元五斤𠲎。
|
456 |
+
侬只秤有问题𠲎?
|
457 |
+
阿拉天天辣箇𡍲做生意,勿会叫侬吃亏个!
|
458 |
+
葛末再加我两只!
|
459 |
+
好个,侬拿去好了。
|
460 |
+
先生小姐,㑚要买点啥个首饰?
|
461 |
+
让阿拉先看看再讲。
|
462 |
+
现在铂金首饰邪气热闹。
|
463 |
+
小姐已经有一只戒指,要勿要配条铂金项链?
|
464 |
+
好个。㑚𡍲有几种款式,拨我看看叫。
|
465 |
+
侬看我箇𡍲一排生有十二条,侪老灵个。
|
466 |
+
还有埃面柜台里向也有交关。
|
467 |
+
我看箇条蛮大方个。
|
468 |
+
先生眼光真好,阿要试试戴戴看?
|
469 |
+
侬看,瞎嗲!
|
470 |
+
我觉着价细忒贵,再讲没啥特别好看……
|
471 |
+
要末阿拉到别个地方再去看看。
|
472 |
+
我想寄只特快专递。
|
473 |
+
寄个是啥?
|
474 |
+
一本英汉字典。
|
475 |
+
邮费多少钞票?
|
476 |
+
先让我称称重量。
|
477 |
+
邮费一共40块。
|
478 |
+
要贴邮票𠲎?
|
479 |
+
勿需要个,现在用电脑打印个邮费已付。
|
480 |
+
我个手机呒没脱了,哪能办?
|
481 |
+
侬想想清爽,大概辣啥辰光啥地方落脱个?
|
482 |
+
我吃中饭个辰光还打过两只电话,所以箇个辰光还辣个。
|
483 |
+
葛侬下半天到过几个地方?
|
484 |
+
喔,想起来了,忘记辣填报名单个台子高头。
|
485 |
+
乃已经收场了,勿晓得还寻得着勿啦?
|
486 |
+
豪𢜶中饭到埃面去打听,快走!
|
487 |
+
唷,电话铃响了,“喂,啥人啊?……噢,谢谢侬!”
|
488 |
+
我手机寻到了,人家打电话来叫我去领了!
|
489 |
+
我有两张汏浴票子辣海,今朝告我一道去汏浴去𠲎?
|
490 |
+
汏啥个浴?桑拿我是怕闷煞脱个,要末就大汤泡。
|
491 |
+
侬箇个人真是戆噱噱,汏汏浴,松松筋骨,有益血脉流通。
|
492 |
+
勿过现在家家屋里侪有得浴缸,汏汏浴勿是蛮便当个?
|
493 |
+
两样个,浴池里汏浴末,人泡得来煞根!
|
494 |
+
朋友道里,大家谈谈心,老爽个。
|
495 |
+
侬看人家,做按摩咾,足浴咾,瘦身咾,赶时尚。
|
496 |
+
侬箇个人真是阿木林一只,介拎勿清!
|
497 |
+
休闲要休了扎劲,休出情调品位高水平。
|
498 |
+
我勿好新天地去去,星巴克坐坐,跑跑襄阳路啊。
|
499 |
+
今朝老勿好意思个,叫侬等了介许多辰光。
|
500 |
+
勿要客气,我没关系个。
|
501 |
+
箇个是杰克先生。
|
502 |
+
伊是我个朋友。㑚认得𠲎?
|
503 |
+
阿拉勿认得。
|
504 |
+
我来帮㑚介绍一下。
|
505 |
+
请问,箇位女士是啥人?
|
506 |
+
伊叫珍妮。
|
507 |
+
认得㑚,我老高兴个。
|
508 |
+
大家轧朋友,下趟多多关照。
|
509 |
+
医生,我箇两天老勿适宜个。
|
510 |
+
侬咳嗽𠲎,流鼻涕𠲎?
|
511 |
+
侬发寒热𠲎,阿里𡍲难过?
|
512 |
+
量量体温。
|
513 |
+
量量血压。
|
514 |
+
侬得过肺炎𠲎?
|
515 |
+
最好拍张x光片。
|
516 |
+
侬发寒热了。
|
517 |
+
要做进一步个检查。
|
518 |
+
要做抽血化验。
|
519 |
+
侬是病毒性感冒。
|
520 |
+
严重𠲎?
|
521 |
+
勿严重,我帮侬开眼药。
|
522 |
+
回去要及时吃药。
|
523 |
+
侬就会得老快好个。
|
524 |
+
侬个毛病哪能了?
|
525 |
+
我头老浑个。
|
526 |
+
浑身没力气。
|
527 |
+
没胃口,啥也勿想吃。
|
528 |
+
让我检查检查。
|
529 |
+
侬箇种情况有几天了?
|
530 |
+
侬最好登了床浪向休息一两天。
|
531 |
+
多吃眼新鲜个蔬菜帮水果
|
532 |
+
希望侬早点康复。
|
533 |
+
明朝是我女朋友个生日。
|
534 |
+
我想买只娃娃送拨伊。
|
535 |
+
葛末就买“芭菲宝宝”送拨伊。
|
536 |
+
“芭菲宝宝”是智能娃娃,会得讲,会得笑,会得要吃个。
|
537 |
+
吃力了还会得睏觉。
|
538 |
+
有介好白相𠲎?
|
539 |
+
有个,小姑娘侪欢喜个。
|
540 |
+
帮伊买只手表好𠲎?
|
541 |
+
箇是最流行个超概念表。
|
542 |
+
勿过勿实用。
|
543 |
+
请问,需要啥𠲎?
|
544 |
+
我要买单。
|
545 |
+
可以打折头𠲎?
|
546 |
+
阿拉个商品侪是优惠价。
|
547 |
+
可以便宜点𠲎?
|
548 |
+
阿拉先买单好了。
|
549 |
+
裙子,人民币119块,鞋子,人民币316块。
|
550 |
+
一共人民币435块。
|
551 |
+
箇忒贵了。
|
552 |
+
能再便宜点𠲎?
|
553 |
+
好个,再拨侬打只7折。
|
554 |
+
打好7折是人民币304块5角。
|
555 |
+
就算人民币304块好了。
|
556 |
+
请到收银台付钞票。
|
557 |
+
收银台辣辣阿里𡍲?
|
558 |
+
侬付现金还是拉卡?
|
559 |
+
我付现金。
|
560 |
+
拨侬,箇是人民币304块。
|
561 |
+
箇是我拨侬个钞票。
|
562 |
+
箇是收据,收好。
|
563 |
+
先生,请侬自我介绍一下,侬有啥个专长?
|
564 |
+
我既有比较强个英文听力、口语、写作能力。
|
565 |
+
侬为啥要到阿拉公司来应聘?
|
566 |
+
因为㑚公司个业务能够发挥我个特长。
|
567 |
+
侬认为自家可以做阿里方面个工作?
|
568 |
+
我可以做中英双向翻译,参加脱外国人交际谈判。
|
569 |
+
警察,我来报案。
|
570 |
+
发生了啥事体?
|
571 |
+
我个皮夹子落脱了。
|
572 |
+
辣辣啥地方?
|
573 |
+
辣辣上海火车站个售票大厅。
|
574 |
+
侬哪能发觉个?
|
575 |
+
我准备拿钞票买票。
|
576 |
+
侬勿要急,勿要哭。
|
577 |
+
再好叫寻寻看。
|
578 |
+
我侪寻过了。
|
579 |
+
葛末,请侬做只笔录。
|
580 |
+
请侬拿刚刚个事体再讲一讲。
|
581 |
+
我辣辣地下通道碰到抢劫。
|
582 |
+
啥物事被抢脱了?
|
583 |
+
我个背包。
|
584 |
+
有多少人?
|
585 |
+
一共两个人。
|
586 |
+
伊拉有啥特征𠲎?
|
587 |
+
侪是年纪轻个,大概23岁左右。
|
588 |
+
中等��材,板刷头,偏胖。
|
589 |
+
伊拉哪能抢侬个背包个。
|
590 |
+
伊拉一前一后,拿我搿了当中。
|
591 |
+
伊拉用啥凶器了𠲎?
|
592 |
+
好像手浪向有刀。
|
593 |
+
是啥样子个刀,有多少长?
|
594 |
+
我当时辰光吓煞脱了。
|
595 |
+
啥也勿记得了。
|
596 |
+
侬包里有点啥物事?
|
597 |
+
有皮夹子,有身份证,有手机。
|
598 |
+
请拿侬个联系方式留下来。
|
599 |
+
阿拉一旦破了案,就会得帮侬联系个。
|
600 |
+
碰到紧急情况千万勿好慌张个。
|
601 |
+
要保持冷静。
|
602 |
+
早浪好,陈先生!
|
603 |
+
是张先生啊,侬好!
|
604 |
+
长远勿见,我老想念侬个!
|
605 |
+
我也常常想来望望侬。
|
606 |
+
今朝碰到侬我交关开心。
|
607 |
+
侬箇抢身体好𠲎?
|
608 |
+
身体蛮好。
|
609 |
+
侬最近好𠲎?
|
610 |
+
还好,勿大忙,侬呢?
|
611 |
+
箇抢里我老忙个!
|
612 |
+
我要走了,我是来帮侬再会个。
|
613 |
+
我辣箇𡍲过了交关开心。
|
614 |
+
箇几天麻烦侬了。
|
615 |
+
侬好多住几天勿啦?
|
616 |
+
我要回去了。
|
617 |
+
我该跑了。
|
618 |
+
我必须先走了。
|
619 |
+
侬啥辰光走?
|
620 |
+
明朝下半天两点半个飞机。
|
621 |
+
我到机场去送侬。
|
622 |
+
谢谢侬来送我。
|
623 |
+
再会,祝侬一路平安。
|
624 |
+
勿要忘记脱帮我打电话,介快就走了,老遗憾个。
|
625 |
+
侬啥辰光再来?
|
626 |
+
我也勿晓得。
|
627 |
+
记得经常来看看我。
|
628 |
+
我会得想侬个。
|
629 |
+
我一定会得再来个。
|
630 |
+
大家多联系。
|
631 |
+
天晚了,我要回去了。
|
632 |
+
有空经常来看看。
|
633 |
+
再会,我一定会得再来个。
|
634 |
+
检查检查,物事侪带齐了𠲎。
|
635 |
+
我侪检查过了。
|
636 |
+
帮我拿箇只芭比娃娃带拨侬个小人。
|
637 |
+
希望伊欢喜箇只礼物。
|
638 |
+
一路注意安全。
|
639 |
+
祝侬旅途愉快。
|
640 |
+
后会有期。
|
641 |
+
欢迎侬再来,再会。
|
642 |
+
喂,请问现在脱我马上送一叠稿子好𠲎?
|
643 |
+
好个。侬住辣啥地方?
|
644 |
+
我就住辣愚园路1136弄2号。
|
645 |
+
阿拉派人半个钟头里向到侬个𡍲来拿。
|
646 |
+
多少辰光好送到?
|
647 |
+
侬要送到阿里𡍲?
|
648 |
+
我要送到上海文艺出版社。
|
649 |
+
请侬告诉我详细地址。
|
650 |
+
今朝上半天就可以送到,快递费收10元洋钿。
|
651 |
+
葛末我等辣海,侬马上来噢,再会!
|
652 |
+
妈妈,今朝有朋友到屋里向来白相。
|
653 |
+
好个,男小人还是小姑娘啊?
|
654 |
+
是我女朋友。
|
655 |
+
快点拿房间收作清爽。
|
656 |
+
好个,我一定会得弄好个。
|
657 |
+
叫㑚爸爸买点菜回来。
|
658 |
+
小姐,我想买一件西装,样子好一眼个。
|
659 |
+
箇𡍲一排侪是进口面料欧版个西装。
|
660 |
+
箇种颜色比伊种稍为深一点。
|
661 |
+
侬看箇两件做工要比伊面个考究。
|
662 |
+
侬看侬穿稍为淡一点个颜色更加好。
|
663 |
+
我比侬长一点点,比箇个尺码大一点个有𠲎?
|
664 |
+
旁边一排衣裳跟箇𡍲个衣裳没啥两样。
|
665 |
+
深藏青阿是及勿上黑颜色好看?
|
666 |
+
箇𡍲个衬衫呒伊面个挺括。
|
667 |
+
侬看埃面一件要好点𠲎?
|
668 |
+
箇条领带颜色亮一点,跟箇件西装比较配。
|
669 |
+
箇眼西装脱埃面个一样,全部打九折。
|
670 |
+
介夜了,还乘啥公交车!叫差头𠲎。
|
671 |
+
勿要等唻,我来拦一部差头。
|
672 |
+
阿拉要到虹桥路延安西路。
|
673 |
+
要勿要上高架走?
|
674 |
+
随便哪能走,哪能快就哪能开!
|
675 |
+
葛末就上高架走。
|
676 |
+
喔唷,碰着堵车,急煞人了!
|
677 |
+
就箇𡍲停车好唻。
|
678 |
+
侬是拉卡还是付现金?
|
679 |
+
发票拿好,物事勿要忘记辣车子高头。
|
680 |
+
小黄,箇是啥人啊?
|
681 |
+
箇是我朋友。
|
682 |
+
认得侬老开心个。
|
683 |
+
侬贵姓?
|
684 |
+
我姓刘,叫刘玉
|
685 |
+
侬叫啥名字啊?
|
686 |
+
我叫张帆。
|
687 |
+
帮侬介绍我个朋友,李明。
|
688 |
+
还是我自家来介绍𠲎!
|
689 |
+
我是上海个。
|
690 |
+
现在辣海上海师范大学当老师。
|
691 |
+
侬阿里𡍲个啊?
|
692 |
+
侬是从广州来个𠲎?
|
693 |
+
勿是,我是成都个。
|
694 |
+
侬现在做啥个?
|
695 |
+
我辣辣上海上大学。
|
696 |
+
学习难𠲎?
|
697 |
+
勿难,我学习老好个。
|
698 |
+
祝侬学习取得更好个成绩。
|
699 |
+
帮侬讲言话老开心个。
|
700 |
+
126路公共汽车站头,到外滩去,辣啥地方?
|
701 |
+
箇部车子到静安寺𠲎?
|
702 |
+
到了常熟路,请侬叫一声我。
|
703 |
+
我已经刷过卡了。
|
704 |
+
我乘过头了,哪能办?
|
705 |
+
箇部是区间车,到梅陇新村要乘另一部。
|
706 |
+
下头一站是啥地方?
|
707 |
+
“美丽园”到了𠲎?
|
708 |
+
再乘两站。
|
709 |
+
对勿起,让一让,我下车。
|
710 |
+
今朝勿晓得放啥电影?
|
711 |
+
阿拉去看电影好𠲎?
|
712 |
+
勿晓得是国产片还是进口片。
|
713 |
+
好像是恐怖片《午夜凶铃》。
|
714 |
+
好个,肯定老有劲个。
|
715 |
+
我老讨厌恐怖片个,忒紧张了。
|
716 |
+
我还是辣辣屋里看看电视,上上网算了。
|
717 |
+
电视没啥好节目看个。
|
718 |
+
放介许多广告,烦煞脱了。
|
719 |
+
我看体育频道,NBA篮球赛。
|
720 |
+
我欢喜体育比赛。
|
721 |
+
我坚持每个礼拜爬两趟山。
|
722 |
+
我每天坚持晨练,夜里散步。
|
723 |
+
侬最欢喜啥活动?
|
724 |
+
我欢喜走象棋。
|
725 |
+
也欢喜看看书,看看报。
|
726 |
+
欢喜看人物传记。
|
727 |
+
我个爱好老多个,游泳,打球。
|
728 |
+
我欢喜丰富多彩个生活。
|
729 |
+
小姐,今朝夜里有勿有空房间。
|
730 |
+
有个,先生侬几位?
|
731 |
+
两个,阿拉住标间好了,几钿一夜?
|
732 |
+
箇𡍲是三星级宾馆,三百元一夜。
|
733 |
+
阿拉要住三夜天。
|
734 |
+
拨侬三楼三零五房间好𠲎?
|
735 |
+
好个。房间里长途电话可以直拨𠲎?
|
736 |
+
房间里只好拨市内,长途可以到总台来打。
|
737 |
+
再问声,餐厅夜里几点钟开门?
|
738 |
+
先生,请侬拿护照或者身份证让我登记一下。
|
739 |
+
谢谢侬中山北路五十两号辣辣阿里𡍲?
|
740 |
+
朝右转弯走到第二条弄堂就是了。
|
741 |
+
请问到大世界去哪能走?
|
742 |
+
侬一直里朝前头走,过了红绿灯就到了。
|
743 |
+
葛末到了人民广场哪能介走法?
|
744 |
+
此地是南京路、西藏路口。
|
745 |
+
侬从箇𡍲过去到埃面,穿过第二条横马路就是。
|
746 |
+
右转马路对面过去点就到了。
|
747 |
+
哪能介远个?
|
748 |
+
从箇𡍲到埃面老近个?
|
749 |
+
埃面有只书报亭,箇面有爿超市,侬看得到𠲎?
|
750 |
+
侬到箇𡍲转弯角子浪去乘地铁。
|
751 |
+
先要乘44路两站,再转地铁一号线,可以到了。
|
752 |
+
葛是路蛮远个,阿拉叫差头去算了。
|
753 |
+
今朝夜到去广州个火车票还有𠲎?
|
754 |
+
“直快”车票没了,“特快”还有。
|
755 |
+
帮我定一张“特快”车票。
|
756 |
+
侬要硬座还是卧铺。
|
757 |
+
软卧还有𠲎?
|
758 |
+
让我看一看,对勿起,只有硬卧票了。
|
759 |
+
欢迎光临,小姐今朝头发要剪一剪还是烫一烫?
|
760 |
+
箇𡍲烫发有游离子烫、负离子烫、直板烫、钢丝烫。
|
761 |
+
用勿着,汏一汏、吹一吹就可以了。
|
762 |
+
侬要干汏还是湿汏啊?
|
763 |
+
干汏好了。
|
764 |
+
轻一眼还是重一眼?
|
765 |
+
现在正好,勿重也勿轻。
|
766 |
+
头还痒兮兮𠲎?勿痒末,去冲脱伊好𠲎?
|
767 |
+
挨下来,脱侬按摩要𠲎?
|
768 |
+
阿拉还有得做面膜、修眉毛、蒸面、香熏、指压。
|
769 |
+
假使小姐要个言话,好打个八折。
|
770 |
+
谢谢,没辰光了,我只要捏捏背跟腰好了。
|
771 |
+
好爬起来了。
|
772 |
+
醒醒呀,已经6点10分了。
|
773 |
+
侬勿是每天6点钟起来个吗。
|
774 |
+
今朝哪能睏懒觉了啦。
|
775 |
+
快点,快点爬起来。
|
776 |
+
我老衰瘏个,昨日夜里睏勿着。
|
777 |
+
侬还去上班𠲎。
|
778 |
+
去个呀,我马上去。
|
779 |
+
快点穿衣裳。
|
780 |
+
今朝有眼冷,穿绒线衫。
|
781 |
+
我还没揩面唻。
|
782 |
+
快点去揩面,刷牙齿。
|
783 |
+
侬要快点了。
|
784 |
+
我还想化妆唻。
|
785 |
+
侬早饭想吃啥?
|
786 |
+
我到单位去吃。
|
787 |
+
鞋带搏好。
|
788 |
+
快走,慢交赶勿上班车了。
|
789 |
+
快点,否则要迟到了。
|
790 |
+
请问,宋明辣辣𠲎?
|
791 |
+
伊勿辣辣,伊出去了。
|
792 |
+
伊去阿里𡍲了?
|
793 |
+
可能辣辣体育馆。
|
794 |
+
阿拉去体育馆看叫。
|
795 |
+
侬有啥爱好𠲎?
|
796 |
+
我欢喜看书。
|
797 |
+
寻伊做啥?
|
798 |
+
请伊帮我补习英文。
|
799 |
+
侬觉着哪能?
|
800 |
+
好个,就得能定好了。
|
801 |
+
还有别个事体𠲎?
|
802 |
+
我好吃香烟𠲎?
|
803 |
+
勿来三,绝对勿可以。
|
804 |
+
我想打只电话,来三𠲎?
|
805 |
+
没问题,侬打好了。
|
806 |
+
个只手机蛮好个,好看看叫𠲎?
|
807 |
+
当然可以,侬看好了。
|
808 |
+
伊做个事体侬赞成个𠲎?
|
809 |
+
我当然同意个。
|
810 |
+
侬答应勿啦?
|
811 |
+
勿答应,我从来没答应过。
|
812 |
+
伊考GRE、TOEFL,侬晓得勿啦?
|
813 |
+
我勿大清爽。
|
814 |
+
海滩高头侬高兴去𠲎?
|
815 |
+
侬阿是勿准备去?
|
816 |
+
要我做保姆,我勿情愿去。
|
817 |
+
我勿会反对伊去个。
|
818 |
+
侬哪能动也勿动个?
|
819 |
+
啥人睬伊!我睬也勿要睬伊!
|
820 |
+
好个,我忒开心了。
|
821 |
+
我被复旦大学录取了。
|
822 |
+
侬看,箇是我个入学通知书。
|
823 |
+
忒赞了。
|
824 |
+
我兴奋得来一夜天没睏着。
|
825 |
+
阿拉侪为侬开心。
|
826 |
+
我今朝心情特别好。
|
827 |
+
爸爸姆妈也老欣慰个。
|
828 |
+
侬晓得戴敏考了哪能𠲎?
|
829 |
+
听讲,伊成绩勿大好。
|
830 |
+
伊心里老难过个。
|
831 |
+
情绪低落。
|
832 |
+
箇两天伊个面孔老难看个。
|
833 |
+
伊自家失去信心了。
|
834 |
+
老失望,老难过个。
|
835 |
+
还勿晓得能勿能上大学了。
|
836 |
+
忒遗憾了。
|
837 |
+
叫伊勿要太伤心。
|
838 |
+
更加勿要悲观。
|
839 |
+
没人能理解伊现在个感受。
|
840 |
+
请问侬贵姓?
|
841 |
+
我姓李。
|
842 |
+
大名叫啥?
|
843 |
+
大名叫李超。
|
844 |
+
伊啥人啊?
|
845 |
+
伊是王晓明。
|
846 |
+
伊啥地方人?
|
847 |
+
我是上海人。
|
848 |
+
伊啥地方来个?
|
849 |
+
伊南京来个。
|
850 |
+
请问侬辣辣阿里𡍲工作?
|
851 |
+
喏,箇个是我个名片。
|
852 |
+
侬到上海来了多少辰光了?
|
853 |
+
我来了交关辰光了。
|
854 |
+
侬上海言话讲得来𠲎?
|
855 |
+
听是听得懂一眼眼,讲是讲勿来个。
|
856 |
+
今朝我来请客。
|
857 |
+
拣爿好吃点个饭店去吃。
|
858 |
+
侬来点菜好唻。
|
859 |
+
㑚箇𡍲啥个菜最有特色?
|
860 |
+
阿拉有只烤乳鸽,吃起来嫩笃笃,香喷喷。
|
861 |
+
叫只清蒸鲈鱼好呢,还是蚝油牛肉好?
|
862 |
+
弄条活杀大王蛇吃吃好𠲎?
|
863 |
+
来只腌笃鲜末好唻。
|
864 |
+
我要吃本邦菜,栗子红烧肉,浓油赤酱个。
|
865 |
+
蹄膀笃得酥一点,听到𠲎!
|
866 |
+
蹄筋勿好炒了糊达达个噢!
|
867 |
+
肉丝吃得来绝绝细,臭豆腐干煎得来喷喷香!
|
868 |
+
箇只鸭子勿太酥。
|
869 |
+
我来拿去再烧烧伊。
|
870 |
+
稍为等一歇,马上就好了噢!
|
871 |
+
点箇眼菜有得吃唻!
|
872 |
+
饭勿要盛了拍拍满。
|
873 |
+
买单!今朝我挺帐。
|
874 |
+
勿要噢,劈硬柴好唻!
|
875 |
+
请问去世纪公园哪能走?
|
876 |
+
从箇𡍲乘花木1路公交车直接到世纪公园。
|
877 |
+
公交车会得挤𠲎?
|
878 |
+
上下班高峰个辰光比较挤。
|
879 |
+
过马路请走人行横道线。
|
880 |
+
过街天桥。
|
881 |
+
过街通道。
|
882 |
+
注意交通安全。
|
883 |
+
阿姨,今朝竹笋老嫩个,称两斤去哪能?
|
884 |
+
几钿一斤?
|
885 |
+
四块五角一斤,𠼢得来!
|
886 |
+
介��个,贵得一塌糊涂!贵了屋里向也勿认得了!
|
887 |
+
帮帮忙噢,侬看看,我𡍲个竹笋是顶好个!
|
888 |
+
真个啊?葛卖便宜一眼末好唻!
|
889 |
+
勿来三个,我勿好做折本生意个!
|
890 |
+
好好好。侬份量要称称足。
|
891 |
+
一句言话!
|
892 |
+
我刚刚晓得侬辣生毛病,葛咾下仔班来望望侬。
|
893 |
+
我一点点小毛病,侬用勿着来看我个!
|
894 |
+
侬一向身体好来死个,哪能辣末生头住医院了?
|
895 |
+
是个呀,年纪大唻,今年四十两岁了。
|
896 |
+
老早心脏从来没发现毛病,所以箇趟有眼措手勿及。
|
897 |
+
乃下趟,对身体千万勿好大意,省得大家担心。
|
898 |
+
箇趟进医院,再晓得身体健康最最要紧。
|
899 |
+
乃要经常锻炼锻炼。我买了眼补药拨侬吃。
|
900 |
+
先生,我想寻一份工作。
|
901 |
+
侬想寻阿里方面个工作?
|
902 |
+
做餐馆服务员啊、酒吧招待员啊,侪可以。
|
903 |
+
侬普通话讲得来𠲎?
|
904 |
+
当然会个,勿过上海言话讲大勿来。
|
905 |
+
勿要紧个,当然最好还是买本会话书学学上海话。
|
906 |
+
海词网要招一个编辑,侬有兴趣𠲎?
|
907 |
+
好个呀,薪金多少?休息日有𠲎?
|
908 |
+
每个号头两千元,每个礼拜休息两天,可以𠲎?
|
909 |
+
请侬箇张表填一填,等阿拉个通知。
|
910 |
+
今朝天气老好个。
|
911 |
+
昨日是啥天气啊?
|
912 |
+
昨日落了一天个雨。
|
913 |
+
明朝天气会得好𠲎?
|
914 |
+
明朝要落雪。
|
915 |
+
一个上半天是阴天。
|
916 |
+
下半天大概天转晴。
|
917 |
+
箇抢天气老冷个,常常冷到零下两三度。
|
918 |
+
上海热天最高温度要到三十八九度,真是热煞!
|
919 |
+
为啥箇两天一天比一天热?
|
920 |
+
喔,现在倒有点风了,稍微风凉点了。
|
921 |
+
天气预报讲,今朝夜快要落雷阵雨。
|
922 |
+
侬哪能还没到?
|
923 |
+
现在堵车。
|
924 |
+
侬到啥地方了?
|
925 |
+
我到东方路了。
|
926 |
+
能准时到𠲎?
|
927 |
+
下趟再去上海火车站最好就是乘地铁。
|
928 |
+
火车票买到了𠲎?
|
929 |
+
买到了,21次特快。
|
930 |
+
几点钟到上海?
|
931 |
+
明朝早浪向7点20分到。
|
932 |
+
票子多少钞票?
|
933 |
+
来回票多少钞票?
|
934 |
+
咨询一下飞机个情况。
|
935 |
+
航班,票价,辰光老啥。
|
936 |
+
请问是民航售票处𠲎?
|
937 |
+
我想订一张20号到上海个机票。
|
938 |
+
侬需要啥辰光个?
|
939 |
+
要一张夜里向个航班个,可以打对折。
|
940 |
+
可以个,单程票还是来回票?
|
941 |
+
来回票,请拿票子送到公司来。
|
942 |
+
先生,我要存钞票,哪能存法?
|
943 |
+
侬要存活期存款,还是定期存款?
|
944 |
+
阿拉箇𡍲有外币人民币定期一本通,也有活期一本通。
|
945 |
+
活期取款末,侬可以随便啥个辰光用硬卡拉。
|
946 |
+
侬可以到有“银联”标志个ATM机里去拿钞票。
|
947 |
+
箇张卡拨侬,阿拉银行有廿四小时自动服务个。
|
948 |
+
葛末硬卡哪能用法呢?
|
949 |
+
插进去,看伊说明操作打就是了。
|
950 |
+
请问,我要拿美元调人民币,箇𡍲好调拨我𠲎?
|
951 |
+
现在日币告人民币个汇率是多少?
|
952 |
+
请侬拿箇张旅行支票调成现钞。
|
953 |
+
请侬箇𡍲签个字。
|
954 |
+
一共是七千五百四十两块,侬点一点。
|
955 |
+
请侬帮我调一点零碎钞票好𠲎?
|
956 |
+
我要打只电话拨我囡儿。
|
957 |
+
箇是自动投币电话,用一块硬币来打个。
|
958 |
+
长风饭店是𠲎?请转328分机。
|
959 |
+
老王,有电话寻侬。
|
960 |
+
请问侬阿是鹿鸣书店个老板?
|
961 |
+
侬声音大眼,我听勿出!
|
962 |
+
对勿起,没人接电话。大概伊出去了𠲎。
|
963 |
+
请侬告诉李民先生,讲我十点钟打过一只电话拨伊。
|
964 |
+
明朝中浪向叫伊打拨我只电话。
|
965 |
+
稍微等一歇,伊马上来接电话。
|
966 |
+
A4纸头到啥地方买?
|
967 |
+
箇个物事几钿?
|
968 |
+
箇只照相机拿出来拨我看看叫。
|
969 |
+
箇种样子个皮夹子㑚有得买𠲎?
|
970 |
+
价钿是廿五块五角。
|
971 |
+
介贵个!可以便宜点𠲎?
|
972 |
+
忒难看了,有勿有款式新一眼个?
|
973 |
+
侬看箇个两样当中阿里一样好?
|
974 |
+
时髦是时髦一点了,价钿忒大!
|
975 |
+
勿要介蹩脚个,要正宗一眼个!
|
976 |
+
今朝箇眼物事大减价,侬听拣好唻。
|
977 |
+
勿要是大兴货噢,小地方生产个!
|
978 |
+
货色乓乓响个!阿拉从来勿做一枪头个生意个。
|
979 |
+
价钿好打折头𠲎?
|
980 |
+
箇眼是找头。
|
981 |
+
帮我开张发票。
|
982 |
+
小姐,箇封信寄到旧金山,邮票贴多少?
|
983 |
+
信放辣秤高头称一称再告诉侬。
|
984 |
+
我要寄钞票拨姆妈,拿张寄款单拨我好𠲎?
|
985 |
+
台面浪自家拿。
|
986 |
+
请问辣末一趟开信箱是啥辰光?
|
987 |
+
五点钟,信快点厾下去还来得及。
|
988 |
+
寄挂号信是勿是好快一眼?
|
989 |
+
挂号信是保险一眼,勿会快反而慢。
|
990 |
+
箇是啥物事?
|
991 |
+
箇是笔记本电脑。
|
992 |
+
箇是侬个笔记本电脑?
|
993 |
+
勿是个,是我儿子个笔记本电脑。
|
994 |
+
箇眼是啥人个光盘?
|
995 |
+
箇眼是阿拉个光盘。
|
996 |
+
埃面一眼是㑚个光盘?
|
997 |
+
埃面个光盘是伊拉个。
|
998 |
+
箇台电脑一直是伊用个𠲎?
|
999 |
+
没噢,一直我辣用。
|
1000 |
+
勿是瞎讲,我箇份工作真叫呒没劲!
|
1001 |
+
侬常常出差,东南西北闯闯,勿要忒潇洒噢!
|
1002 |
+
长年累月东奔西走忙煞了,生活忒呒没规律了。
|
1003 |
+
侬个工作调拨我做做就好了。
|
1004 |
+
真叫看人挑担勿吃力,我脱侬调一调好𠲎?
|
1005 |
+
空是空得来没事体做。
|
1006 |
+
工资末,是侬个零头;上班末,大家淘淘浆糊。
|
1007 |
+
下班辰光呒没到,大家就想滑脚。
|
1008 |
+
侬讲有劲𠲎?
|
1009 |
+
侬要走啦?
|
1010 |
+
辰光勿早了,我要回去了。
|
1011 |
+
再坐一歇好唻。
|
1012 |
+
勿坐了,我还有眼事体辣海。
|
1013 |
+
葛末我送送侬。
|
1014 |
+
勿要送得个,我自家走。
|
1015 |
+
勿要紧个,送侬到电梯口。
|
1016 |
+
谢谢,谢谢。
|
1017 |
+
走好,走好,箇𡍲盏灯开一开。
|
1018 |
+
留步,留步,勿要送了。
|
1019 |
+
再会!有空多来白相相!
|
1020 |
+
一定来。拜哎,拜哎!
|
1021 |
+
侬是做啥个?
|
1022 |
+
我是阿拉公司个推销员。
|
1023 |
+
埃面一位是做啥个?
|
1024 |
+
伊也是推销员。
|
1025 |
+
箇位女士是推销员𠲎?
|
1026 |
+
勿是个,伊是阿拉个业务主管。
|
1027 |
+
立辣窗口头个箇个人是㑚经理,对𠲎?
|
1028 |
+
对个,伊是阿拉经理。
|
1029 |
+
箇眼人做啥事体个?
|
1030 |
+
大概是点公司员工。
|
1031 |
+
伊拉勿是公司员工啊?
|
1032 |
+
箇我倒勿大晓得。
|
1033 |
+
请问,李立辣辣𠲎?
|
1034 |
+
勿辣海,伊还没回来。
|
1035 |
+
侬晓得伊啥辰光回来𠲎?
|
1036 |
+
侬是小明对𠲎?
|
1037 |
+
是个,我是个,侬是?
|
1038 |
+
我是伊个同学刘刚。
|
1039 |
+
久仰久仰。
|
1040 |
+
李立经常讲到侬个。
|
1041 |
+
我来做只自我介绍。
|
1042 |
+
我脱李立是同班同学。
|
1043 |
+
阿拉是好朋友,我今年26岁。
|
1044 |
+
我是1984年6月15号生个。
|
1045 |
+
侬是来工作个𠲎?
|
1046 |
+
勿是个,是来度假个。
|
1047 |
+
侬现在到阿里𡍲去啊?
|
1048 |
+
我想去寻李立。
|
1049 |
+
我想帮伊一道去世纪公园。
|
1050 |
+
好个呀,明朝阿拉一道去。
|
1051 |
+
阿拉辣辣啥地方集合啊?
|
1052 |
+
明朝早浪向10点钟,辣辣食堂门口头。
|
1053 |
+
侬帮伊讲一声,好𠲎?
|
1054 |
+
好个,我一定帮伊讲。
|
1055 |
+
请㑚快点来部救护车,豪𢜶!
|
1056 |
+
我要整理房间。
|
1057 |
+
调羹
|
1058 |
+
叉子
|
1059 |
+
刀
|
1060 |
+
箇本书是我个。
|
1061 |
+
埃本书是阿拉儿子个。
|
1062 |
+
门口头有个人。
|
1063 |
+
书架高头侪是书。
|
1064 |
+
马路斜对过有家银行。
|
1065 |
+
有一家银行辣辣马路斜对过。
|
1066 |
+
侬屋里有电脑书𠲎?
|
1067 |
+
有个。
|
1068 |
+
有交关。
|
1069 |
+
我平常醒得来得个早。
|
1070 |
+
我欢喜睏懒觉。
|
1071 |
+
我每天六点钟起来。
|
1072 |
+
我要睏到八点半侪刚刚起来。
|
1073 |
+
我穿好衣裳以后就吃早饭。
|
1074 |
+
我辰光来大勿及咾,只好出门买大饼油条。
|
1075 |
+
我可以笃笃定定吃牛奶面包鸡蛋,或者泡饭酱菜。
|
1076 |
+
我每天早浪八点钟离开屋里,九点钟开始工作。
|
1077 |
+
从上半日一直做到夜快头。
|
1078 |
+
中浪向十二点钟左右,到阿拉单位食堂去吃中饭。
|
1079 |
+
阿拉经常做到下半天一点钟,盒饭是送上来个。
|
1080 |
+
做好生活一般五点半回到屋里吃夜饭。
|
1081 |
+
我夜里向一直出去个,脱朋友一道白相相。
|
1082 |
+
回来再上上网,发发email,弄到十一点钟再睏觉。
|
1083 |
+
侬现在辣辣做啥?
|
1084 |
+
我辣辣打电脑。
|
1085 |
+
侬个朋友近来辣海忙点啥?
|
1086 |
+
伊一直辣海做生意。
|
1087 |
+
目前我呒没辣做啥。
|
1088 |
+
上海人荡马路一只鼎,大概也是都市生态一种。
|
1089 |
+
交关马路商店集中,商品琳琅满目,真好看!
|
1090 |
+
倒勿一定要买啥物事,练啥脚劲。
|
1091 |
+
有辰光荡荡看看,领领市面,饱饱眼福。
|
1092 |
+
一荡马路,总归煞勿牢要买眼物事回转去。
|
1093 |
+
现在闹猛个地方,夜市面也好得一塌糊涂。
|
1094 |
+
南京东路高头百年老店多,南京西路高头高档精品店多。
|
1095 |
+
淮海路个商品高雅前卫,有海派特色。
|
1096 |
+
再要开眼界,去看人民广场下头个地下商场。
|
1097 |
+
小伙子陪女朋友来白相,眼睛看得五花八门。
|
1098 |
+
袋袋里个钞票摸空勿要紧,去寻自动取款机好唻。
|
1099 |
+
上海一方面拆脱了交关旧房子,一方面开辟了交关新房子。
|
1100 |
+
既清洁了周围空气,又降低了市中心个气温。
|
1101 |
+
绿地当中,假山咾,瀑布咾,湖泊咾,田园风光等等。
|
1102 |
+
白相上海新造个绿地也瞎有劲!
|
1103 |
+
名气最响个是辣辣太平桥绿地当中造了个“新天地”。
|
1104 |
+
闹市中心辟出新天地,闹中取静,又创新咾。
|
1105 |
+
一只长长个湖泊水几化清爽!
|
1106 |
+
伊长个是三角身胚,立辣海看上去瞎帅!
|
1107 |
+
小林个眉毛生得浓,眼睛又大,眼睫毛老长。
|
1108 |
+
伊个体型生得匀称唻!肩胛阔,腰身细,肚皮又有肌肉。
|
1109 |
+
伊平常注意锻炼咾,胸肌腹肌都是邦邦硬个!
|
1110 |
+
勿像有种男小囡,生了细细长长,像根豆芽菜。
|
1111 |
+
伊末,又是矮墩墩,又是壮得肉也绽出来。
|
1112 |
+
吃得忒多,长得胖来要死,乃末要影响发育。
|
1113 |
+
脚一长了末,就显得苗条得来,摆起POSE来末老漂亮个!
|
1114 |
+
侬看伊戆脑个样子,倒也蛮可爱。
|
1115 |
+
伊打扮得妖里妖气,戆头势勿谈了!
|
1116 |
+
身体好末,人老起劲;勿好末,啥事体也勿想做。
|
1117 |
+
一泼老头老太,天天勿脱班,弯腰昂头转身体。
|
1118 |
+
从小勿锻炼,一日到夜做功课,乃末弄出骺背。
|
1119 |
+
生活要做细,吃饭要吃粗,三餐勿吃多。
|
1120 |
+
气气闷闷生毛病,嘻嘻哈哈添寿命。
|
1121 |
+
勤汏浴,勤剃头,勤调衣裳,勤打扫房间。
|
1122 |
+
最好备一本家用医卫手册辣枕头边,常常翻翻看。
|
1123 |
+
补药好是好,勿过药补勿如食补。
|
1124 |
+
侬住阿里𡍲个?
|
1125 |
+
我住辣淮海路。
|
1126 |
+
我辣辣淮海路850号602室。
|
1127 |
+
对勿起,850号辣盖啥地方?
|
1128 |
+
辣盖弄堂着着里向头。
|
1129 |
+
箇条弄堂��直跑跑到底。。
|
1130 |
+
辣辣第二土大房子个第三家。
|
1131 |
+
上海
|
1132 |
+
上海言话
|
1133 |
+
黄浦江
|
1134 |
+
苏州河
|
1135 |
+
事体
|
1136 |
+
物事
|
1137 |
+
白相
|
1138 |
+
打朋
|
1139 |
+
轧朋友
|
1140 |
+
出洋相
|
1141 |
+
拎勿清
|
1142 |
+
淘浆糊
|
1143 |
+
拗造型
|
1144 |
+
隑
|
1145 |
+
囥
|
1146 |
+
瀴
|
1147 |
+
嗲
|
1148 |
+
滑稽
|
1149 |
+
适意
|
1150 |
+
的粒滚圆
|
1151 |
+
我
|
1152 |
+
阿拉
|
1153 |
+
侬
|
1154 |
+
㑚
|
1155 |
+
伊
|
1156 |
+
伊拉
|
1157 |
+
箇个
|
1158 |
+
迭个
|
1159 |
+
埃个
|
1160 |
+
伊个
|
1161 |
+
箇𡍲
|
1162 |
+
埃面
|
1163 |
+
箇能
|
1164 |
+
埃能
|
1165 |
+
介
|
1166 |
+
拨
|
1167 |
+
勿
|
1168 |
+
呒没
|
1169 |
+
老
|
1170 |
+
邪气
|
1171 |
+
本地人
|
1172 |
+
外地人
|
1173 |
+
乡下人
|
1174 |
+
镇浪人
|
1175 |
+
城里人
|
1176 |
+
外乡人
|
1177 |
+
外路人
|
1178 |
+
外国人
|
1179 |
+
外头人
|
1180 |
+
洋人
|
1181 |
+
老外
|
1182 |
+
华侨
|
1183 |
+
海归
|
1184 |
+
江北人
|
1185 |
+
苏北人
|
1186 |
+
东洋人
|
1187 |
+
陌生人
|
1188 |
+
生人头
|
1189 |
+
生客
|
1190 |
+
熟客
|
1191 |
+
爷爷
|
1192 |
+
老爹
|
1193 |
+
阿奶
|
1194 |
+
外公
|
1195 |
+
外婆
|
1196 |
+
太太
|
1197 |
+
爷娘
|
1198 |
+
爸爸
|
1199 |
+
姆妈
|
1200 |
+
妈妈
|
1201 |
+
娘
|
1202 |
+
过房娘
|
1203 |
+
公婆
|
1204 |
+
公公
|
1205 |
+
婆婆
|
1206 |
+
阿婆
|
1207 |
+
丈人
|
1208 |
+
伯伯
|
1209 |
+
大伯
|
1210 |
+
叔叔
|
1211 |
+
海派
|
1212 |
+
唱歌
|
1213 |
+
民歌
|
1214 |
+
合唱
|
1215 |
+
唱K
|
1216 |
+
跳舞
|
1217 |
+
芭蕾舞
|
1218 |
+
走台
|
1219 |
+
说唱
|
1220 |
+
钢琴
|
1221 |
+
小提琴
|
1222 |
+
萨克斯风
|
1223 |
+
灯笼
|
1224 |
+
脱口秀
|
1225 |
+
做戏
|
1226 |
+
唱戏
|
1227 |
+
沪剧
|
1228 |
+
越剧
|
1229 |
+
绍兴戏
|
1230 |
+
滑稽戏
|
1231 |
+
唱只歌拨大家听好𠲎?
|
1232 |
+
好个。唱只啥?
|
1233 |
+
我只歌唱了好勿好?
|
1234 |
+
蛮好,勿推扳。
|
1235 |
+
侬看两张照片阿里张好?
|
1236 |
+
我想是箇张好。
|
1237 |
+
箇个物事是侬个𠲎?
|
1238 |
+
箇是我个。
|
1239 |
+
箇桩事体侬晓得𠲎?
|
1240 |
+
哪能勿晓得呢?
|
1241 |
+
我为啥一定要晓得呢?
|
1242 |
+
侬勿关心,所以勿晓得。
|
1243 |
+
我老欢喜侬个。
|
1244 |
+
我就是服帖侬。
|
1245 |
+
阿拉脱老爸老妈已经分开住分开吃了。
|
1246 |
+
我礼拜天常常到丈人老头𡍲去帮伊拉做眼力气生活。
|
1247 |
+
阿拉今年要帮阿公老头做八十大寿。
|
1248 |
+
外甥今年考大学缺了几分没考进重点大学。
|
1249 |
+
阿拉表妹半年前养小囡养了一个大胖儿子。
|
1250 |
+
舅妈拉单位勿景气,伊下岗以后去做月嫂收入倒蛮好。
|
1251 |
+
娘舅拉长远勿去了,伊经常一家头辣屋里忒厌气。
|
1252 |
+
今朝阿拉一家门侪到爷叔𡍲去白相好𠲎?
|
1253 |
+
我买好了,两盒西洋参,五斤苹果,还有十只蟹。
|
1254 |
+
假使侬新房子已经装修好了,我就来帮侬搬场。
|
1255 |
+
搬勿动末,多叫几个人来搬。
|
1256 |
+
箇眼钢宗锅子侪好掼脱伊唻。
|
1257 |
+
早两年买个箇只脱排油烟机过时了,葛咾我要买只新个。
|
1258 |
+
房间新家生侪买好了末,箇点破家生侪可以厾脱了!
|
1259 |
+
既然侬介欢喜种花,侬埃只阳台就专门摆花盆好唻。
|
1260 |
+
一旦培训期满,我就可以做一个银行出纳员。
|
1261 |
+
只有我自家开始做生意个辰光,我再觉着称心如意。
|
1262 |
+
退休也退休了,还常常拨伊拉请得去做顾问。
|
1263 |
+
伊个工作工资老高,工作辰光也交关理想。
|
1264 |
+
只要伊辣事业浪做出成就,就可能派到国外去合作。
|
1265 |
+
我欢喜画油画,但是我勿想拿伊做我个终身职业。
|
1266 |
+
勿管侬到勿到箇爿厂去工作,总归要告诉我一声。
|
1267 |
+
伊东托人,西应聘,为来为去为仔做自家称心个生活。
|
1268 |
+
即使我拿勿到高个工资,我也勿肯放弃箇只饭碗。
|
1269 |
+
今朝忙做忙,也要做光箇眼生活再走。
|
1270 |
+
今朝鸡毛菜倒蛮便宜个末!
|
1271 |
+
一点也勿便宜,贵得来热昏!
|
1272 |
+
箇能介烂糟糟个菜要介贵啊!
|
1273 |
+
侬看看清爽,勿要忒新鲜噢!
|
1274 |
+
洋山芋𠼢来死个!
|
1275 |
+
荷兰豆赞得勿得了!
|
1276 |
+
我想问㑚租房子蹲蹲。
|
1277 |
+
房子个采光条件要好一眼,勿要角角头个房子。
|
1278 |
+
租个房子要离我工作个地方近一眼。
|
1279 |
+
我要一室一厅个房子,面积辣四十个平方左右。
|
1280 |
+
㑚箇间房子朝向好勿好?
|
1281 |
+
煤气勿一定要一家头用,但是卫生要独用个。
|
1282 |
+
我最好要多层个三四楼。
|
1283 |
+
是勿是装修好个?
|
1284 |
+
要末寄“特快邮件”明朝就可以到。
|
1285 |
+
寄件人、收件人地址姓名勿要填反脱!
|
1286 |
+
邮政编码勿要忘记写!
|
1287 |
+
我还有张汇款单,辣侬箇𡍲领钞票是𠲎?
|
1288 |
+
侬身份证带来𠲎?
|
1289 |
+
身份证号我已经填好了,可以领吗?
|
1290 |
+
对勿起,呒没身份证是勿好领汇款个。
|
1291 |
+
如果辰光有钞票够,我要到欧洲去旅游。
|
1292 |
+
亨八冷打我箇趟旅程需要十二天。
|
1293 |
+
祝侬一路浪向白相开心。
|
1294 |
+
明朝要动身,但是我到现在箱子还没整理好。
|
1295 |
+
一桩事体是马上到银行里去拿眼钞票。
|
1296 |
+
喔,我刚刚想起来,身份证勿要忘记脱带。
|
1297 |
+
要勿是侬提醒我,随便哪能也想勿起来。
|
1298 |
+
我勿想乘汽车去,情愿走得去。
|
1299 |
+
侬安全到达目的地以后,勿要忘记脱打只电话告诉我。
|
1300 |
+
我肯定忘记了带洋伞,但现在已经忒晏了。
|
1301 |
+
火车马上就要开,阿拉勉强可以赶到。
|
1302 |
+
上海值得去白相个地方实在忒多。
|
1303 |
+
勿过也有眼地方没啥去头。
|
1304 |
+
黄浦江两岸最好看,可以坐辣船里游览。
|
1305 |
+
侬看,浦东有介许多高层建筑,还有东方明珠。
|
1306 |
+
我还是对豫园、城隍庙、上海老街更加有兴趣。
|
1307 |
+
辣延安路高架高头看两面个上海风光,瞎嗲!
|
1308 |
+
一圈兜回来,还好看看外滩近代建筑夜景。
|
1309 |
+
苏州河是上海母亲河,弯弯曲曲横跨流过市中心。
|
1310 |
+
上海人结婚,有个人家酒水场面办得老大。
|
1311 |
+
发拨好朋友个请帖浪有新郎新娘合影个照片。
|
1312 |
+
新郎一面有伴郎,新娘一面有伴娘。
|
1313 |
+
结婚仪式开始,双方爷娘要讲言话,祝贺伊拉。
|
1314 |
+
证婚人致贺词,双方互赠结婚戒指。
|
1315 |
+
新婚房里,有放红枣花生桂圆脱仔瓜子个,讨个彩头。
|
1316 |
+
除脱亲眷,还请来了上司、同事、大学中学小学同学。
|
1317 |
+
闹起新房来,可想而知要闹猛得一塌糊涂了!
|
1318 |
+
现在老师对𠲎,邪气迷信考试,明朝又要考试了。
|
1319 |
+
老师告爷娘侪是考试迷,一门心思出考题监考。
|
1320 |
+
三番四次买参考书,兴师动众请家教,弄得小囡苦得来一天世界。
|
1321 |
+
现在上海家家侪是独生子女咾,家长对小囡个读书相当关注。
|
1322 |
+
子女培养全社会侪邪气关心,教育要进行改革。
|
1323 |
+
21世纪社会,勿懂电脑勿懂外语往往会步步难。
|
1324 |
+
所以只看见学生辣辣嘀里嘟噜读外语,滴粒笃落打电脑。
|
1325 |
+
勿过,外语、电脑对多数人来讲,到底还是一个新个事物。
|
1326 |
+
要搞出点名堂来,对社会有用,专业还是要硬碰硬个。
|
1327 |
+
要成功,还要有各种素质,像创造力啊。
|
1328 |
+
苏州河个老名字叫“松江”又称“吴淞江”。
|
1329 |
+
江边有条支河,叫“上海浦”,就是现在个黄浦江。
|
1330 |
+
有个人旅游欢喜跑了远,其实上海郊区好白相地方也老多个。
|
1331 |
+
侬啥事体要骂人家?
|
1332 |
+
一到春天,上海人侪想跑出去散散步,散散心。
|
1333 |
+
事体总归有得解决个办法个。
|
1334 |
+
是一对结婚四五年个夫妻。
|
1335 |
+
有是有个,没带来。
|
1336 |
+
结婚以后,应该是更加好个朋友。
|
1337 |
+
阿拉侪是旅游迷。
|
1338 |
+
今朝穿了箇件红兮兮个衬衫,我跑得出去𠲎?
|
1339 |
+
箇能个沙发我勿想买。
|
1340 |
+
伊拉两位现在老忙个,勿想帮侬谈。
|
1341 |
+
94路朝襄阳北路方向开个公交车阿里乘?
|
1342 |
+
反正,侪是我勿对。
|
1343 |
+
还要买菜,买肉,买日用品。
|
1344 |
+
将来想要到阿拉国家个宝岛台湾。
|
1345 |
+
财富勿是一辈子个朋友。
|
1346 |
+
伊就会得有外公外婆。
|
1347 |
+
阿拉关系侪老好个。
|
1348 |
+
朋友才是一辈子个财富。
|
1349 |
+
阿拉啥辰光开始工作?
|
1350 |
+
阿拉屋里向是四世同堂。
|
1351 |
+
侪欢喜自然。
|
1352 |
+
侬也蛮好个。
|
1353 |
+
侬个头发做了蛮好个。
|
1354 |
+
为啥勿听我个言话?
|
1355 |
+
侬应该往好个一面看。
|
1356 |
+
一般。
|
1357 |
+
侬个英文讲了交关好。
|
1358 |
+
我还要擦擦台子扫扫地。
|
1359 |
+
㑚屋里向人老好个。
|
1360 |
+
我看伊是,吃了睏,睏了吃,打打游戏,懒是懒!
|
1361 |
+
侬看,伊来了。
|
1362 |
+
我看叫。
|
1363 |
+
每天睏7-8个钟头。
|
1364 |
+
睏觉前头我还要看半个钟头个书。
|
1365 |
+
我辣辣全国有老多朋友。
|
1366 |
+
小李,刚刚有只电话寻侬。
|
1367 |
+
伊辣辣屋里就闹猛了。
|
1368 |
+
到箇辰光,阿拉亲眷就更加多了。
|
1369 |
+
辰光就是钞票。
|
1370 |
+
侬辣海阿里只大学读书?
|
1371 |
+
现在我下去晨练。
|
1372 |
+
后天礼拜一。
|
1373 |
+
帮女朋友分手之后我觉得老胸闷个。
|
1374 |
+
回去以后被骂了一顿。
|
1375 |
+
侬过奖了。
|
1376 |
+
谢谢侬个邀请。
|
1377 |
+
谢谢侬个鼓励。
|
1378 |
+
谢谢侬个祝福。
|
1379 |
+
谢谢侬个指导。
|
1380 |
+
谢谢侬个礼物。
|
1381 |
+
两个人总归观点勿一样。
|
1382 |
+
真戆。
|
1383 |
+
侬个口语增好。
|
1384 |
+
真触霉头。
|
1385 |
+
我真个没希望了。
|
1386 |
+
我真个老后悔个。
|
1387 |
+
我真个受勿了了。
|
1388 |
+
真个烦煞脱了。
|
1389 |
+
我没哥哥,弟弟,妹妹。
|
1390 |
+
我下半天6点钟回去。
|
1391 |
+
老勿好意思个,没及时回信拨侬。
|
1392 |
+
因为伊没电了。
|
1393 |
+
到下班辰光了。
|
1394 |
+
辰光到了。
|
1395 |
+
阿拉要珍惜辰光。
|
1396 |
+
现在是5点半。
|
1397 |
+
早浪向,我拿闹钟开到5点40分。
|
1398 |
+
勿过,现在好交关了。
|
1399 |
+
现在电信业老发达个。
|
1400 |
+
伊总归工作第一。
|
1401 |
+
伊欢喜摄影。
|
1402 |
+
还有就是,考试个辰光忒紧张了。
|
1403 |
+
过去个三年辰光白白浪费脱了。
|
1404 |
+
阿拉刚刚搬到箇𡍲。
|
1405 |
+
喔唷,撞着侬了,对勿起!
|
1406 |
+
我帮伊拉讲,谈朋友个辰光是朋友。
|
1407 |
+
经常吵相骂个。
|
1408 |
+
做啥也没精神。
|
1409 |
+
我经常约伊拉散步,聊天。
|
1410 |
+
是啥人打来个。
|
1411 |
+
拿工作摆辣第一位。
|
1412 |
+
工作当中勿可以骂人,吵相骂。
|
1413 |
+
如果复读,我又要再读一年书。
|
1414 |
+
是复读还是上一般个大学?
|
1415 |
+
快要走遍阿拉国家个山山水水了。
|
1416 |
+
谢谢侬让一让好𠲎?
|
1417 |
+
身份证拨我。
|
1418 |
+
会得有儿子或者女儿。
|
1419 |
+
填写票据应该用钢笔或者碳素笔。
|
1420 |
+
请拿好侬个身份证。
|
1421 |
+
我要告张先生、李先生谈一谈。
|
1422 |
+
我去拿老王寻得来。
|
1423 |
+
做啥侪勿顺利。
|
1424 |
+
侬是新来个𠲎?
|
1425 |
+
侬一定会得成功个。
|
1426 |
+
箇是我个女朋友杨雪。
|
1427 |
+
侬明年一定会得赢个。
|
1428 |
+
我觉得忒伤心了。
|
1429 |
+
箇有啥吓人个。
|
1430 |
+
10点半睏觉。
|
1431 |
+
自家人
|
1432 |
+
我勿睬伊拉。
|
1433 |
+
我要收作龌龊衣裳。
|
1434 |
+
天亮快了,我要走了。
|
1435 |
+
等天好了,我要拿稿子送到出版社去。
|
1436 |
+
整个上半天,我侪辣海忙打字。
|
1437 |
+
现在快12点钟了。
|
1438 |
+
到辰光具体个利息是根据人民银行标准为准个。
|
1439 |
+
衣裳
|
1440 |
+
侬想点啥事体?
|
1441 |
+
杨雪,我还有老多好朋友。
|
1442 |
+
阿拉有老多共同爱好。
|
1443 |
+
现在12点多了。
|
1444 |
+
为来为去侪为了侬,所以勿去!
|
1445 |
+
忒灵了,谢谢侬。
|
1446 |
+
还是先去打只电话算了。
|
1447 |
+
侬是勿是有两台电脑?
|
1448 |
+
箇台相机是勿是侬个?
|
1449 |
+
存款有定、活两种。
|
1450 |
+
电话报时117
|
1451 |
+
天气预报121
|
1452 |
+
箇是我姐姐。
|
1453 |
+
箇是林欢,阿拉姐姐个爱人。
|
1454 |
+
请问,几点钟了?
|
1455 |
+
请问侬存多少钞票。
|
1456 |
+
请���六位密码。
|
1457 |
+
问题出了阿里𡍲?
|
1458 |
+
一点也勿吃力,谢谢侬来接阿拉。
|
1459 |
+
一旦我有可能,我就要跳槽。
|
1460 |
+
我勿等啥人。
|
1461 |
+
我没听到咾。
|
1462 |
+
我理解侬个心情。
|
1463 |
+
箇个礼拜。
|
1464 |
+
阿拉也成为好朋友了。
|
1465 |
+
侬个朋友哪能还呒没来啦?
|
1466 |
+
阿拉爸爸买菜去了。
|
1467 |
+
我现在有点懒了。
|
1468 |
+
天气一天比一天冷。
|
1469 |
+
哦,晓得了,谢谢。
|
1470 |
+
是个,我刚刚来,请多多关照哦。
|
1471 |
+
侬老吸引人个。
|
1472 |
+
老长辰光没写信拨侬了。
|
1473 |
+
拿扫帚扫一扫地浪向。
|
1474 |
+
伊慢慢叫辣辣赶上去。
|
1475 |
+
我屋里有个老人突然倒辣地浪,大概中风了。
|
1476 |
+
衣裳㫰出去了。
|
1477 |
+
龌龊衣裳去汏汏伊!
|
1478 |
+
参加派对个言话,侬会穿阿里件衣裳?
|
1479 |
+
没啥好担心个。
|
1480 |
+
我要到超市去,熟泡面啊,酒酿圆子啊,侪要买。
|
1481 |
+
箇班火车几点钟开?
|
1482 |
+
我应该早眼清醒。
|
1483 |
+
从上海火车乘到郑州要几个钟头?
|
1484 |
+
如果我箇眼生活可以做光,我要礼拜一到南京去。
|
1485 |
+
再好眼个,像箇能样子个,侬要𠲎?
|
1486 |
+
一套红木家生要十几万洋钿唻!
|
1487 |
+
我想买一张到上海个单程机票。
|
1488 |
+
菜切好辣海,勿晓得啥个辰光来烧。
|
1489 |
+
侬想吃眼点心𠲎?
|
1490 |
+
侬想要头发剃得长点还是短点?
|
1491 |
+
侬头发想吹啥个式样?
|
1492 |
+
辣两年前吃过一趟。
|
1493 |
+
勿好意思箇条路是啥路?
|
1494 |
+
门开勿开!
|
1495 |
+
㑚看,窗开辣辣,厨房间门也没关!
|
1496 |
+
水开快唻,泡杯茶吃了再走。
|
1497 |
+
侬饭吃过了𠲎?
|
1498 |
+
我还没吃过。
|
1499 |
+
侬生鱼片吃过𠲎?
|
1500 |
+
一直朝前走对𠲎?
|
1501 |
+
请朝前一步。
|
1502 |
+
夜到7点20分切饭。
|
1503 |
+
我想存钞票。
|
1504 |
+
请问存款利息多少?
|
1505 |
+
侬好,侬个信老早收到了。
|
1506 |
+
阿里个方向是朝南?
|
1507 |
+
相信自家。
|
1508 |
+
伊拉是红肠切切,色拉拌拌,烧烧罗宋汤,自家做西菜。
|
1509 |
+
用笔个规定:
|
1510 |
+
现在正好12点钟。
|
1511 |
+
整
|
1512 |
+
我存1000块。
|
1513 |
+
裙子
|
1514 |
+
火警电话119
|
1515 |
+
电话查号114
|
1516 |
+
报警电话110
|
1517 |
+
请侬拿箇号头记下来。
|
1518 |
+
箇桩事体伊告我讲个。
|
1519 |
+
对勿起,到南京东路哪能走近一点?
|
1520 |
+
㑚一路浪向吃力了𠲎
|
1521 |
+
伊拉罗嗦。
|
1522 |
+
伊拉就拿气出辣我身浪向。
|
1523 |
+
我个儿子长大了希望做医生。
|
1524 |
+
我个地址是武宁路36弄9号底楼。
|
1525 |
+
一夜天侪辣辣想事体。
|
1526 |
+
我买了小菜,烧好了饭,等我儿子回来吃饭。
|
1527 |
+
我个表停脱了。
|
1528 |
+
我儿子跟小王买碟片去了。
|
1529 |
+
快点去!慢吞吞、木笃笃做啥!
|
1530 |
+
侬吃面条还是吃饭?喝橙汁还是喝咖啡?
|
1531 |
+
夜里向切了老多老酒。
|
1532 |
+
今朝夜头侬约会辣啥地方?
|
1533 |
+
小菜摊了一台子,吃剩辣海个肉汤都呒没收好。
|
1534 |
+
请问㑚几位是美国贸易代表团个𠲎?
|
1535 |
+
拿架子高头个灰尘揩一揩。
|
1536 |
+
等等我,慢慢叫!
|
1537 |
+
伊拉上半日来坐了歇,讲下半日就要离开上海。
|
1538 |
+
欢迎光临,现在人多,请侬坐下来等一歇。
|
1539 |
+
加油,振作起来。
|
1540 |
+
加油
|
1541 |
+
走呀!大家走起来!
|
1542 |
+
当阿拉赶到辰光,伊拉舞已经开始跳起来了。
|
1543 |
+
大家电风扇吹吹。
|
1544 |
+
阿拉是同事侪要互相照顾个。
|
1545 |
+
慢叫清理垃圾。
|
1546 |
+
㑚箇𡍲生意真好,介闹猛!
|
1547 |
+
请侬填好个张表格。
|
1548 |
+
够了够了。
|
1549 |
+
辰光要到快了,侬哪能还捱发捱发。
|
1550 |
+
今朝到城隍庙了末,就要尝尝本邦小吃个味道了。
|
1551 |
+
侬哪能介慢个啦!
|
1552 |
+
我辰光来勿及唻,侬快点好勿啦!
|
1553 |
+
辰光还早辣海唻,大家坐下来茄茄山河𠲎。
|
1554 |
+
里向开了一爿爿欧式小店,情调瞎嗲!
|
1555 |
+
勿好对读书失去希望。
|
1556 |
+
明朝礼拜天。
|
1557 |
+
每种利息也勿一样。
|
1558 |
+
冷艳,老灵个。
|
1559 |
+
蓝天,白云,老灵老灵个。
|
1560 |
+
蔬菜,水果沙拉。
|
1561 |
+
我做了实在忒搭浆了。
|
1562 |
+
照老样子好了,稍为短一点。
|
1563 |
+
到现在我又打好了两篇稿子。
|
1564 |
+
𠲎
|
1565 |
+
侬勿要来捣蛋好勿啦!
|
1566 |
+
侬看,台子高头还摆了一叠样版。
|
1567 |
+
否则明年高考又要落空了。
|
1568 |
+
烹调方法也是又精致又集江南大成。
|
1569 |
+
请问箇𡍲附近有厕所𠲎?
|
1570 |
+
侬发票有勿有?
|
1571 |
+
三个号头一年利息是1.17。
|
1572 |
+
比如讲:2月13号,应该写成零贰月壹拾叁号。
|
1573 |
+
大房间里向家生倒勿推扳辣海!
|
1574 |
+
煤气、热水器、洗衣机、空调有勿有?
|
1575 |
+
租金哪能算?水电煤哪能交?
|
1576 |
+
我想去买只优盘,侬脱我一道去好𠲎?
|
1577 |
+
伊拉匆匆忙忙去看足球比赛,屋里物事侪摊辣海。
|
1578 |
+
侪是侬平常勿用工。
|
1579 |
+
我对伊拉讲道理没兴趣。
|
1580 |
+
继续努力。
|
1581 |
+
我要努力复习一年。
|
1582 |
+
活期个一年利息是0.72。
|
1583 |
+
箇是侬个存折。
|
1584 |
+
我没希望了。
|
1585 |
+
忒烦了。
|
1586 |
+
咖啡
|
1587 |
+
一面吃吃红茶咖啡,一面吃吃色拉西点,一面谈谈心。
|
1588 |
+
饭
|
1589 |
+
侬今朝去锻炼过𠲎?
|
1590 |
+
老克拉讲,勿管伊啥辰光啥时尚。
|
1591 |
+
啥
|
1592 |
+
五年头个是2.79。
|
1593 |
+
对勿起,侬打错电话了。
|
1594 |
+
修面侬要修修清爽。
|
1595 |
+
水煮鱼。
|
1596 |
+
茶壶里再冲点水辣海。
|
1597 |
+
我欢喜爬山。
|
1598 |
+
假使我讲拨侬听,大家勿要走来走去,侬有意见?
|
1599 |
+
侬素质高一点好𠲎!
|
1600 |
+
哪能勿告诉我哪能做?
|
1601 |
+
侬如果高兴,就吃一点𠲎。
|
1602 |
+
要等伊踢好,还有一歇辣海唻!
|
1603 |
+
勿过,爸爸还是怪我。
|
1604 |
+
为啥高考成绩��好?
|
1605 |
+
啥体勿早点讲!
|
1606 |
+
叫侬去为啥咾勿去?
|
1607 |
+
新酷一族派对辣辣茶吧里开,四个人牛皮吹吹。
|
1608 |
+
我还要焗油脱吹头发。
|
1609 |
+
大家个行李侪拿齐了𠲎?
|
1610 |
+
快一点好𠲎!
|
1611 |
+
轻轻叫放!
|
1612 |
+
喂,张小静辣辣屋里𠲎?麻烦侬叫伊听听电话。
|
1613 |
+
我拿六扇窗侪关上了。
|
1614 |
+
箇条阴沟通好伊!
|
1615 |
+
箇封信脱我寄脱伊!
|
1616 |
+
定期个三个号头帮五年个利息也勿一样。
|
1617 |
+
3月30号个班机全部客满。
|
1618 |
+
阿拉要回去唻,侬托阿拉个事体一定留心辣海。
|
1619 |
+
我还请了钟点工帮忙打扫好了房间。
|
1620 |
+
讲言话要客气,亲切。
|
1621 |
+
侬讲得我馋也馋煞唻!
|
1622 |
+
零
|
1623 |
+
侬辣海等啥人啊?
|
1624 |
+
上海人讲上海话;上海人也侪会讲普通话。
|
1625 |
+
箇是箇𡍲个面筋百叶双档最最正宗个。
|
1626 |
+
勿要看勿起人家。
|
1627 |
+
也勿要妒忌人家。
|
1628 |
+
要虚心脱人家学习。
|
1629 |
+
勿要直接叫名字。
|
1630 |
+
排好队,勿要插队!
|
1631 |
+
谢谢侬勿要辣车厢里哗啦哗啦打手机,可以改发短信𠲎!
|
1632 |
+
车厢里向只报站名,勿要啰囌。
|
1633 |
+
箇部火车辣昆山站头停车𠲎?
|
1634 |
+
箇套房子是阿拉囡儿帮女婿蹲个。
|
1635 |
+
溪水,草地,木房子,忒灵了。
|
1636 |
+
侬箇牌人推扳勿啦!
|
1637 |
+
绝对勿可以凶来兮个。
|
1638 |
+
9月25号,应该写成零玖月贰拾伍号。
|
1639 |
+
请正确写好票据个日期。
|
1640 |
+
请侬正确填写票据。
|
1641 |
+
正确使用中文大写数字
|
1642 |
+
对伊拉个要求要尽量做到。
|
1643 |
+
对客户勿要勿理勿睬。
|
1644 |
+
老板
|
1645 |
+
大老板
|
1646 |
+
我带㑚去。
|
1647 |
+
我已经长远没去锻炼了。
|
1648 |
+
箇只箱子要特别脱我当心。
|
1649 |
+
还缺一只箱子。
|
1650 |
+
勿要紧个。
|
1651 |
+
火腿要隔水“蒸”,牛百叶只要水里一“氽”。
|
1652 |
+
阿拉蹄膀笃笃,螺蛳嗍嗍,沪剧哼哼,邪气小乐!
|
1653 |
+
台子脚拨伊装好了。
|
1654 |
+
要尊敬领导,尊敬同事。
|
1655 |
+
同事之间也要有礼貌。
|
1656 |
+
搞好同事之间个关系。
|
1657 |
+
唉,后悔啊!
|
1658 |
+
伊去买了两趟侪呒没买到。
|
1659 |
+
我现在个位置辣地图高头阿里𡍲?
|
1660 |
+
开口要有礼貌,勿讲下作言话。
|
1661 |
+
昨日我快要出门个辰光,伊倒一摇一摇个来了。
|
1662 |
+
伊要上进了。
|
1663 |
+
番茄炒蛋。
|
1664 |
+
炒猪肝。
|
1665 |
+
听讲一只精品鸡鸭血汤,鲜是鲜得来!
|
1666 |
+
咖喱牛肉汤、油豆腐线粉汤勿要忘记脱吃。
|
1667 |
+
桂花赤豆汤侬要吃吃看𠲎?
|
1668 |
+
苏州豆腐干,绍兴霉干菜,宁波黄泥螺,南京鸭血汤。
|
1669 |
+
宫爆鸡丁。
|
1670 |
+
老早苏州河污染得又黑又臭,侬可以看看前几年个样子。
|
1671 |
+
但是现在城区大多数地方,辣唐朝以前还是海滩。
|
1672 |
+
分
|
1673 |
+
已经等了半个钟头了。
|
1674 |
+
赤膊上街忒难看。
|
1675 |
+
角
|
1676 |
+
最近又开辟了朱家角旅游点,镇高头个放生桥历史悠久。
|
1677 |
+
忒勿像言话了。
|
1678 |
+
一长排石库门房子,外表还像旧弄堂。
|
1679 |
+
㑚看,伊拉书房里倒收作得清清爽爽个。
|
1680 |
+
买火车票个窗口辣海阿里?
|
1681 |
+
交关
|
1682 |
+
有种人,叫伊“老克拉”,是从“colour”脱变过来个。
|
1683 |
+
写字台高头一叠专业书里混辣海几本卡通书。
|
1684 |
+
箇本书我没。
|
1685 |
+
墙高头几张古色古香个字画挂辣海。
|
1686 |
+
红烧牛肉。
|
1687 |
+
“门槛精到九十门”、“个角头碰着天花板”、“霉头触到哈尔滨”。
|
1688 |
+
前两年市政府花了大力气,使得苏州河变清了。
|
1689 |
+
再过几年,苏州河沿岸真要成为上海一条亮丽个风景线。
|
1690 |
+
我真勿好意思!
|
1691 |
+
喂,我要叫部差头,现在到华山路200弄40号门口。
|
1692 |
+
喏,拨侬!
|
1693 |
+
茭白要用油“焖”,蛤蜊摆辣蛋里“炖”。
|
1694 |
+
带鱼要吃干“煎”,豆板好油“氽”。
|
1695 |
+
急啥急啦!
|
1696 |
+
衬衫
|
1697 |
+
走过去一眼!
|
1698 |
+
静一点好𠲎!
|
1699 |
+
脱我来!
|
1700 |
+
大众出租汽车公司个电话号码是啥?
|
1701 |
+
急救电话120
|
1702 |
+
几件随机行李要称称。
|
1703 |
+
“老上海”派对里,几个老克拉勿但唱起评弹申曲。
|
1704 |
+
喏,足球踢得正好紧张辣海。
|
1705 |
+
一块圆台玻璃敲碎脱了。
|
1706 |
+
旧杂志卖光了。
|
1707 |
+
老三老四
|
1708 |
+
个
|
1709 |
+
圆
|
1710 |
+
箇阿是开到北京去个火车?
|
1711 |
+
乘箇部火车,走几号通道?
|
1712 |
+
侬勿晓得上海有各式各样个“吧”,侬又戆脱!
|
1713 |
+
上海新好男人,又会拼命工作,又会将休闲进行到底。
|
1714 |
+
松江个醉白池、青浦个曲水园、嘉定个秋霞圃。
|
1715 |
+
上海箇块地方,海内外样样小菜侪有。
|
1716 |
+
学生意
|
1717 |
+
勿好去瞎碰个!
|
1718 |
+
拨河
|
1719 |
+
有网络作家讲写作计划,也有小企业家谈种种发财经。
|
1720 |
+
红烧豆腐。
|
1721 |
+
西装
|
1722 |
+
侬勿要瞎讲!
|
1723 |
+
侬勿要辣辣装戆大!
|
1724 |
+
快要疯脱了。
|
1725 |
+
做一个可爱个上海人!
|
1726 |
+
上海人要树立上海新形象。
|
1727 |
+
到七百多年前元朝辰光,建置了上海县。
|
1728 |
+
上海开埠以后,中西融合,兼收并蓄,形成了宽带个文化氛围。
|
1729 |
+
大上海,方言个气派也大,表现了中西交汇。
|
1730 |
+
公车高头要静了再静。
|
1731 |
+
上海介繁荣,主要是一百六十年前开埠以后发生个变化。
|
1732 |
+
绿灯辰光,转弯车子要让人。
|
1733 |
+
修面修𠲎?
|
1734 |
+
从松江、青浦一带个出土文物当中看到。
|
1735 |
+
当时,国画、京戏、通俗小说、流行歌曲,侪是相当流行个。
|
1736 |
+
都市文化海纳百川,建筑、出版、娱乐、弄堂生活。
|
1737 |
+
当今,海派文��正辣注入新个活力发扬光大。
|
1738 |
+
对于身无分文个人,叫伊“瘪的生丝”。
|
1739 |
+
“牵头皮”、“收骨头”、“戳壁脚”。
|
1740 |
+
公共场合勿吃香烟。
|
1741 |
+
让标准路标跟规范文字讲话。
|
1742 |
+
京戏
|
1743 |
+
上海从来是个海纳百川个城市。
|
1744 |
+
我唱卡拉OK,从小辰光歌唱起,一直唱到劲歌。
|
1745 |
+
我有辰光佮仔朋友唱唱歌,泡泡吧。
|
1746 |
+
侬吃香烟𠲎?
|
1747 |
+
老弱病残孕幼侪要照顾。
|
1748 |
+
轧个地方请保持安静依次排队。
|
1749 |
+
环境卫生人人珍视。
|
1750 |
+
做个讨人欢喜个小朋友。
|
1751 |
+
本地人、外来人齐心共创上海新文明。
|
1752 |
+
还有佘山风景区,淀山湖大观园、东方绿洲咾。
|
1753 |
+
一碗绉纱馄饨,皮薄是薄得肉也看得见!
|
1754 |
+
侬闻闻香味看,五香茶叶蛋香勿香?
|
1755 |
+
我想吃吃畅咾再走。
|
1756 |
+
喂,120是𠲎?
|
1757 |
+
唱独脚戏
|
1758 |
+
唱功
|
1759 |
+
个唱
|
1760 |
+
男个
|
1761 |
+
女个
|
1762 |
+
立柜台个
|
1763 |
+
压台戏
|
1764 |
+
小把戏
|
1765 |
+
评弹
|
1766 |
+
说书
|
1767 |
+
锡剧
|
1768 |
+
昆曲
|
1769 |
+
演戏
|
1770 |
+
演出
|
1771 |
+
演员
|
1772 |
+
大牌
|
1773 |
+
场子
|
1774 |
+
日场
|
1775 |
+
夜场
|
1776 |
+
票子
|
1777 |
+
吊嗓子
|
1778 |
+
追星
|
1779 |
+
粉丝
|
1780 |
+
拉拉队
|
1781 |
+
海选
|
1782 |
+
游乐场
|
1783 |
+
西洋镜
|
1784 |
+
广播
|
1785 |
+
电影
|
1786 |
+
电影院
|
1787 |
+
片子
|
1788 |
+
抢版
|
1789 |
+
电视
|
1790 |
+
毛片
|
1791 |
+
运动场
|
1792 |
+
体育场
|
1793 |
+
球场
|
1794 |
+
体育
|
1795 |
+
塑胶跑道
|
1796 |
+
打球
|
1797 |
+
篮球
|
1798 |
+
三对三
|
1799 |
+
排球
|
1800 |
+
电影明星
|
1801 |
+
毛脚
|
1802 |
+
三毛球
|
1803 |
+
脚色
|
1804 |
+
硬脚头
|
1805 |
+
烦煞脱了!
|
1806 |
+
硬头
|
1807 |
+
足球
|
1808 |
+
板凳
|
1809 |
+
搞尔
|
1810 |
+
乒乓球
|
1811 |
+
台球
|
1812 |
+
打乒乓
|
1813 |
+
高尔夫球
|
1814 |
+
保龄球
|
1815 |
+
博克胸
|
1816 |
+
打落弹
|
1817 |
+
羽毛球
|
1818 |
+
体操
|
1819 |
+
厾铅球
|
1820 |
+
跳山羊
|
1821 |
+
跳高
|
1822 |
+
跳远
|
1823 |
+
游泳
|
1824 |
+
自由泳
|
1825 |
+
游泳池
|
1826 |
+
翻跟斗
|
1827 |
+
攀岩
|
1828 |
+
蹦极
|
1829 |
+
草割
|
1830 |
+
秒杀
|
1831 |
+
黑哨
|
1832 |
+
黑猫
|
1833 |
+
老猫
|
1834 |
+
老记
|
1835 |
+
老法师
|
1836 |
+
老克拉
|
1837 |
+
请侬记牢密码。
|
1838 |
+
太太
|
1839 |
+
过房儿子
|
1840 |
+
过房囡儿
|
1841 |
+
独养儿子
|
1842 |
+
儿子
|
1843 |
+
囡儿
|
1844 |
+
小囡
|
1845 |
+
乖囡
|
1846 |
+
侄囡
|
1847 |
+
外甥囡
|
1848 |
+
孙囡
|
1849 |
+
外甥
|
1850 |
+
爷叔
|
1851 |
+
叔父
|
1852 |
+
姑父
|
1853 |
+
孃孃
|
1854 |
+
姑妈
|
1855 |
+
姨妈
|
1856 |
+
姨夫
|
1857 |
+
阿姨
|
1858 |
+
娘舅
|
1859 |
+
舅舅
|
1860 |
+
舅妈
|
1861 |
+
夫妻
|
1862 |
+
丈夫
|
1863 |
+
老公
|
1864 |
+
男人
|
1865 |
+
妻子
|
1866 |
+
老婆
|
1867 |
+
夫人
|
1868 |
+
女人
|
1869 |
+
小老公
|
1870 |
+
小老婆
|
1871 |
+
哥哥
|
1872 |
+
阿哥
|
1873 |
+
阿嫂
|
1874 |
+
嫂嫂
|
1875 |
+
姐姐
|
1876 |
+
阿姐
|
1877 |
+
姐妹
|
1878 |
+
姊妹
|
1879 |
+
姐夫
|
1880 |
+
兄弟
|
1881 |
+
弟弟
|
1882 |
+
阿弟
|
1883 |
+
弟新妇
|
1884 |
+
妹妹
|
1885 |
+
阿妹
|
1886 |
+
妹夫
|
1887 |
+
党兄
|
1888 |
+
堂弟
|
1889 |
+
堂妹
|
1890 |
+
新妇
|
1891 |
+
表兄
|
1892 |
+
咾
|
1893 |
+
表哥
|
1894 |
+
表弟
|
1895 |
+
表妹
|
1896 |
+
子女
|
1897 |
+
小人
|
1898 |
+
小毛头
|
1899 |
+
阿囡
|
1900 |
+
私生子
|
1901 |
+
女婿
|
1902 |
+
上门女婿
|
1903 |
+
当中人
|
1904 |
+
老实人
|
1905 |
+
达人
|
1906 |
+
强人
|
1907 |
+
妖人
|
1908 |
+
情人
|
1909 |
+
侄子
|
1910 |
+
孙子
|
1911 |
+
孙女
|
1912 |
+
孙女婿
|
1913 |
+
曾孙
|
1914 |
+
曾孙女
|
1915 |
+
熟人
|
1916 |
+
朋友
|
1917 |
+
老朋友
|
1918 |
+
小朋友
|
1919 |
+
同行
|
1920 |
+
同年
|
1921 |
+
主人家
|
1922 |
+
客人
|
1923 |
+
本人
|
1924 |
+
人家人
|
1925 |
+
邻居
|
1926 |
+
近邻
|
1927 |
+
街坊
|
1928 |
+
房客
|
1929 |
+
房东
|
1930 |
+
男人家
|
1931 |
+
女人家
|
1932 |
+
先生
|
1933 |
+
老公公
|
1934 |
+
老头子
|
1935 |
+
老太太
|
1936 |
+
老太婆
|
1937 |
+
拖油瓶
|
1938 |
+
少爷
|
1939 |
+
老爷
|
1940 |
+
师傅
|
1941 |
+
师母
|
1942 |
+
内行
|
1943 |
+
外行
|
1944 |
+
读书人
|
1945 |
+
孝子
|
1946 |
+
大佬官
|
1947 |
+
欧巴桑
|
1948 |
+
酒肉朋友
|
1949 |
+
小资
|
1950 |
+
小开
|
1951 |
+
上司
|
1952 |
+
教书先生
|
1953 |
+
顶头上司
|
1954 |
+
头头
|
1955 |
+
主任
|
1956 |
+
老板娘
|
1957 |
+
经理
|
1958 |
+
工头
|
1959 |
+
监工
|
1960 |
+
厂长
|
1961 |
+
工程师
|
1962 |
+
技术人员
|
1963 |
+
会计
|
1964 |
+
出纳
|
1965 |
+
组长
|
1966 |
+
检验员
|
1967 |
+
中介
|
1968 |
+
猎头
|
1969 |
+
内勤
|
1970 |
+
卖票员
|
1971 |
+
外勤
|
1972 |
+
采购员
|
1973 |
+
伙计
|
1974 |
+
工人
|
1975 |
+
小工
|
1976 |
+
零工
|
1977 |
+
民工
|
1978 |
+
上手
|
1979 |
+
下手
|
1980 |
+
帮手
|
1981 |
+
佣人
|
1982 |
+
仆人
|
1983 |
+
保姆
|
1984 |
+
钟点工
|
1985 |
+
丫头
|
1986 |
+
摊贩
|
1987 |
+
厨师
|
1988 |
+
跑堂
|
1989 |
+
门房
|
1990 |
+
商人
|
1991 |
+
生意人
|
1992 |
+
青春饭
|
1993 |
+
房产商
|
1994 |
+
房虫
|
1995 |
+
店员
|
1996 |
+
售货员
|
1997 |
+
售票员
|
1998 |
+
证人
|
1999 |
+
演员
|
2000 |
+
医生
|
2001 |
+
护士
|
2002 |
+
看护
|
2003 |
+
保育员
|
2004 |
+
农民
|
2005 |
+
长工
|
2006 |
+
网虫
|
2007 |
+
短工
|
2008 |
+
记者
|
2009 |
+
警察
|
2010 |
+
保镖
|
2011 |
+
邮递员
|
2012 |
+
驾驶员
|
2013 |
+
司机
|
2014 |
+
车模
|
2015 |
+
木匠
|
2016 |
+
木工
|
2017 |
+
清洁工
|
2018 |
+
清道夫
|
2019 |
+
码子
|
2020 |
+
模子
|
2021 |
+
老好人
|
2022 |
+
明白人
|
2023 |
+
好好先生
|
2024 |
+
老手
|
2025 |
+
飞人
|
2026 |
+
妖怪
|
2027 |
+
金领
|
2028 |
+
王老五
|
2029 |
+
白骨精
|
2030 |
+
提款机
|
2031 |
+
花花公子
|
2032 |
+
阿飞
|
2033 |
+
姘头
|
2034 |
+
野鸡
|
2035 |
+
屁精
|
2036 |
+
地头蛇
|
2037 |
+
骗子
|
2038 |
+
拐子
|
2039 |
+
瘪三
|
2040 |
+
强盗
|
2041 |
+
小偷
|
2042 |
+
三只手
|
2043 |
+
流氓
|
2044 |
+
侪
|
2045 |
+
辣辣
|
2046 |
+
葛咾
|
2047 |
+
...浪
|
2048 |
+
里向
|
2049 |
+
啥人
|
2050 |
+
脱
|
2051 |
+
唻
|
text/__init__.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from text import cleaners
|
3 |
+
|
4 |
+
|
5 |
+
def text_to_sequence(text, symbols, cleaner_names):
|
6 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
7 |
+
Args:
|
8 |
+
text: string to convert to a sequence
|
9 |
+
cleaner_names: names of the cleaner functions to run the text through
|
10 |
+
Returns:
|
11 |
+
List of integers corresponding to the symbols in the text
|
12 |
+
'''
|
13 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
14 |
+
|
15 |
+
sequence = []
|
16 |
+
|
17 |
+
clean_text = _clean_text(text, cleaner_names)
|
18 |
+
for symbol in clean_text:
|
19 |
+
if symbol not in _symbol_to_id.keys():
|
20 |
+
continue
|
21 |
+
symbol_id = _symbol_to_id[symbol]
|
22 |
+
sequence += [symbol_id]
|
23 |
+
return sequence
|
24 |
+
|
25 |
+
|
26 |
+
def _clean_text(text, cleaner_names):
|
27 |
+
for name in cleaner_names:
|
28 |
+
cleaner = getattr(cleaners, name)
|
29 |
+
if not cleaner:
|
30 |
+
raise Exception('Unknown cleaner: %s' % name)
|
31 |
+
text = cleaner(text)
|
32 |
+
return text
|
text/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (1.2 kB). View file
|
|
text/__pycache__/cleaners.cpython-37.pyc
ADDED
Binary file (2.35 kB). View file
|
|
text/cleaners.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re, sys ,os
|
2 |
+
import cn2an
|
3 |
+
import opencc
|
4 |
+
|
5 |
+
converter = opencc.OpenCC('lexicon/zaonhe.json')
|
6 |
+
|
7 |
+
# List of (Latin alphabet, ipa) pairs:
|
8 |
+
_latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
9 |
+
('A', 'ᴇ'),
|
10 |
+
('B', 'bi'),
|
11 |
+
('C', 'si'),
|
12 |
+
('D', 'di'),
|
13 |
+
('E', 'i'),
|
14 |
+
('F', 'ᴇf'),
|
15 |
+
('G', 'dʑi'),
|
16 |
+
('H', 'ᴇtɕʰ'),
|
17 |
+
('I', 'ᴀi'),
|
18 |
+
('J', 'dʑᴇ'),
|
19 |
+
('K', 'kʰᴇ'),
|
20 |
+
('L', 'ᴇl'),
|
21 |
+
('M', 'ᴇm'),
|
22 |
+
('N', 'ᴇn'),
|
23 |
+
('O', 'o'),
|
24 |
+
('P', 'pʰi'),
|
25 |
+
('Q', 'kʰiu'),
|
26 |
+
('R', 'ᴀl'),
|
27 |
+
('S', 'ᴇs'),
|
28 |
+
('T', 'tʰi'),
|
29 |
+
('U', 'ɦiu'),
|
30 |
+
('V', 'vi'),
|
31 |
+
('W', 'dᴀbɤliu'),
|
32 |
+
('X', 'ᴇks'),
|
33 |
+
('Y', 'uᴀi'),
|
34 |
+
('Z', 'zᴇ')
|
35 |
+
]]
|
36 |
+
|
37 |
+
def _number_to_shanghainese(num):
|
38 |
+
num = cn2an.an2cn(num).replace('一十','十').replace('二十', '廿').replace('二', '两')
|
39 |
+
return re.sub(r'((?:^|[^三四五六七八九])十|廿)两', r'\1二', num)
|
40 |
+
|
41 |
+
def number_to_shanghainese(text):
|
42 |
+
return re.sub(r'\d+(?:\.?\d+)?', lambda x: _number_to_shanghainese(x.group()), text)
|
43 |
+
|
44 |
+
def latin_to_ipa(text):
|
45 |
+
for regex, replacement in _latin_to_ipa:
|
46 |
+
text = re.sub(regex, replacement, text)
|
47 |
+
return text
|
48 |
+
|
49 |
+
def shanghainese_to_ipa(text):
|
50 |
+
text = number_to_shanghainese(text.upper())
|
51 |
+
text = converter.convert(text).replace('-','').replace('$',' ')
|
52 |
+
text = re.sub(r'[A-Z]', lambda x: latin_to_ipa(x.group())+' ', text)
|
53 |
+
text = re.sub(r'[、;:]', ',', text)
|
54 |
+
text = re.sub(r'\s*,\s*', ', ', text)
|
55 |
+
text = re.sub(r'\s*。\s*', '. ', text)
|
56 |
+
text = re.sub(r'\s*?\s*', '? ', text)
|
57 |
+
text = re.sub(r'\s*!\s*', '! ', text)
|
58 |
+
text = re.sub(r'\s*$', '', text)
|
59 |
+
return text
|
60 |
+
|
61 |
+
def shanghainese_cleaners(text):
|
62 |
+
text = shanghainese_to_ipa(text)
|
63 |
+
if re.match(r'[^\.,!\?\-…~]', text[-1]):
|
64 |
+
text += '.'
|
65 |
+
return text
|
transforms.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
13 |
+
unnormalized_widths,
|
14 |
+
unnormalized_heights,
|
15 |
+
unnormalized_derivatives,
|
16 |
+
inverse=False,
|
17 |
+
tails=None,
|
18 |
+
tail_bound=1.,
|
19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
+
|
23 |
+
if tails is None:
|
24 |
+
spline_fn = rational_quadratic_spline
|
25 |
+
spline_kwargs = {}
|
26 |
+
else:
|
27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
+
spline_kwargs = {
|
29 |
+
'tails': tails,
|
30 |
+
'tail_bound': tail_bound
|
31 |
+
}
|
32 |
+
|
33 |
+
outputs, logabsdet = spline_fn(
|
34 |
+
inputs=inputs,
|
35 |
+
unnormalized_widths=unnormalized_widths,
|
36 |
+
unnormalized_heights=unnormalized_heights,
|
37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
38 |
+
inverse=inverse,
|
39 |
+
min_bin_width=min_bin_width,
|
40 |
+
min_bin_height=min_bin_height,
|
41 |
+
min_derivative=min_derivative,
|
42 |
+
**spline_kwargs
|
43 |
+
)
|
44 |
+
return outputs, logabsdet
|
45 |
+
|
46 |
+
|
47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
+
bin_locations[..., -1] += eps
|
49 |
+
return torch.sum(
|
50 |
+
inputs[..., None] >= bin_locations,
|
51 |
+
dim=-1
|
52 |
+
) - 1
|
53 |
+
|
54 |
+
|
55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
56 |
+
unnormalized_widths,
|
57 |
+
unnormalized_heights,
|
58 |
+
unnormalized_derivatives,
|
59 |
+
inverse=False,
|
60 |
+
tails='linear',
|
61 |
+
tail_bound=1.,
|
62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
+
outside_interval_mask = ~inside_interval_mask
|
67 |
+
|
68 |
+
outputs = torch.zeros_like(inputs)
|
69 |
+
logabsdet = torch.zeros_like(inputs)
|
70 |
+
|
71 |
+
if tails == 'linear':
|
72 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
+
unnormalized_derivatives[..., 0] = constant
|
75 |
+
unnormalized_derivatives[..., -1] = constant
|
76 |
+
|
77 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
78 |
+
logabsdet[outside_interval_mask] = 0
|
79 |
+
else:
|
80 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
81 |
+
|
82 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
89 |
+
min_bin_width=min_bin_width,
|
90 |
+
min_bin_height=min_bin_height,
|
91 |
+
min_derivative=min_derivative
|
92 |
+
)
|
93 |
+
|
94 |
+
return outputs, logabsdet
|
95 |
+
|
96 |
+
def rational_quadratic_spline(inputs,
|
97 |
+
unnormalized_widths,
|
98 |
+
unnormalized_heights,
|
99 |
+
unnormalized_derivatives,
|
100 |
+
inverse=False,
|
101 |
+
left=0., right=1., bottom=0., top=1.,
|
102 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
103 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
104 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
105 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
106 |
+
raise ValueError('Input to a transform is not within its domain')
|
107 |
+
|
108 |
+
num_bins = unnormalized_widths.shape[-1]
|
109 |
+
|
110 |
+
if min_bin_width * num_bins > 1.0:
|
111 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
112 |
+
if min_bin_height * num_bins > 1.0:
|
113 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
114 |
+
|
115 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
116 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
117 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
118 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
119 |
+
cumwidths = (right - left) * cumwidths + left
|
120 |
+
cumwidths[..., 0] = left
|
121 |
+
cumwidths[..., -1] = right
|
122 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
+
|
124 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
125 |
+
|
126 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
127 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
128 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
129 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
130 |
+
cumheights = (top - bottom) * cumheights + bottom
|
131 |
+
cumheights[..., 0] = bottom
|
132 |
+
cumheights[..., -1] = top
|
133 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
134 |
+
|
135 |
+
if inverse:
|
136 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
137 |
+
else:
|
138 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
139 |
+
|
140 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
141 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
142 |
+
|
143 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
144 |
+
delta = heights / widths
|
145 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
146 |
+
|
147 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
148 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
if inverse:
|
153 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
154 |
+
+ input_derivatives_plus_one
|
155 |
+
- 2 * input_delta)
|
156 |
+
+ input_heights * (input_delta - input_derivatives)))
|
157 |
+
b = (input_heights * input_derivatives
|
158 |
+
- (inputs - input_cumheights) * (input_derivatives
|
159 |
+
+ input_derivatives_plus_one
|
160 |
+
- 2 * input_delta))
|
161 |
+
c = - input_delta * (inputs - input_cumheights)
|
162 |
+
|
163 |
+
discriminant = b.pow(2) - 4 * a * c
|
164 |
+
assert (discriminant >= 0).all()
|
165 |
+
|
166 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
167 |
+
outputs = root * input_bin_widths + input_cumwidths
|
168 |
+
|
169 |
+
theta_one_minus_theta = root * (1 - root)
|
170 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
171 |
+
* theta_one_minus_theta)
|
172 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
173 |
+
+ 2 * input_delta * theta_one_minus_theta
|
174 |
+
+ input_derivatives * (1 - root).pow(2))
|
175 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
176 |
+
|
177 |
+
return outputs, -logabsdet
|
178 |
+
else:
|
179 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
180 |
+
theta_one_minus_theta = theta * (1 - theta)
|
181 |
+
|
182 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
183 |
+
+ input_derivatives * theta_one_minus_theta)
|
184 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
185 |
+
* theta_one_minus_theta)
|
186 |
+
outputs = input_cumheights + numerator / denominator
|
187 |
+
|
188 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
189 |
+
+ 2 * input_delta * theta_one_minus_theta
|
190 |
+
+ input_derivatives * (1 - theta).pow(2))
|
191 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
192 |
+
|
193 |
+
return outputs, logabsdet
|
utils.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from json import loads
|
3 |
+
from torch import load, FloatTensor
|
4 |
+
from numpy import float32
|
5 |
+
import librosa
|
6 |
+
|
7 |
+
|
8 |
+
class HParams():
|
9 |
+
def __init__(self, **kwargs):
|
10 |
+
for k, v in kwargs.items():
|
11 |
+
if type(v) == dict:
|
12 |
+
v = HParams(**v)
|
13 |
+
self[k] = v
|
14 |
+
|
15 |
+
def keys(self):
|
16 |
+
return self.__dict__.keys()
|
17 |
+
|
18 |
+
def items(self):
|
19 |
+
return self.__dict__.items()
|
20 |
+
|
21 |
+
def values(self):
|
22 |
+
return self.__dict__.values()
|
23 |
+
|
24 |
+
def __len__(self):
|
25 |
+
return len(self.__dict__)
|
26 |
+
|
27 |
+
def __getitem__(self, key):
|
28 |
+
return getattr(self, key)
|
29 |
+
|
30 |
+
def __setitem__(self, key, value):
|
31 |
+
return setattr(self, key, value)
|
32 |
+
|
33 |
+
def __contains__(self, key):
|
34 |
+
return key in self.__dict__
|
35 |
+
|
36 |
+
def __repr__(self):
|
37 |
+
return self.__dict__.__repr__()
|
38 |
+
|
39 |
+
|
40 |
+
def load_checkpoint(checkpoint_path, model):
|
41 |
+
checkpoint_dict = load(checkpoint_path, map_location='cpu')
|
42 |
+
iteration = checkpoint_dict['iteration']
|
43 |
+
saved_state_dict = checkpoint_dict['model']
|
44 |
+
if hasattr(model, 'module'):
|
45 |
+
state_dict = model.module.state_dict()
|
46 |
+
else:
|
47 |
+
state_dict = model.state_dict()
|
48 |
+
new_state_dict= {}
|
49 |
+
for k, v in state_dict.items():
|
50 |
+
try:
|
51 |
+
new_state_dict[k] = saved_state_dict[k]
|
52 |
+
except:
|
53 |
+
logging.info("%s is not in the checkpoint" % k)
|
54 |
+
new_state_dict[k] = v
|
55 |
+
if hasattr(model, 'module'):
|
56 |
+
model.module.load_state_dict(new_state_dict)
|
57 |
+
else:
|
58 |
+
model.load_state_dict(new_state_dict)
|
59 |
+
logging.info("Loaded checkpoint '{}' (iteration {})" .format(
|
60 |
+
checkpoint_path, iteration))
|
61 |
+
return
|
62 |
+
|
63 |
+
|
64 |
+
def get_hparams_from_file(config_path):
|
65 |
+
with open(config_path, "r") as f:
|
66 |
+
data = f.read()
|
67 |
+
config = loads(data)
|
68 |
+
|
69 |
+
hparams = HParams(**config)
|
70 |
+
return hparams
|
71 |
+
|
72 |
+
|
73 |
+
def load_audio_to_torch(full_path, target_sampling_rate):
|
74 |
+
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
|
75 |
+
return FloatTensor(audio.astype(float32))
|