KevSun commited on
Commit
b82d631
·
verified ·
1 Parent(s): dd83554

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -14
app.py CHANGED
@@ -26,31 +26,30 @@ if st.button("Predict"):
26
 
27
  # Extract the predictions
28
  predictions = outputs.logits.squeeze()
29
-
30
  # Convert to numpy array if necessary
31
  predicted_scores = predictions.numpy()
32
-
33
- # Apply a significant uniform reduction (e.g., reduce by 70%)
34
- reduction_factor = 0.3 # Reduce scores by 70%
35
  adjusted_scores = predicted_scores * reduction_factor
36
-
37
  # Ensure scores do not go below zero
38
  adjusted_scores = np.maximum(adjusted_scores, 0)
39
-
40
  # Normalize the scores to ensure they fall within the 0-9 range
41
  normalized_scores = (adjusted_scores / adjusted_scores.max()) * 9 # Scale to 9
42
-
43
- # Apply an additional reduction to the overall score if needed
44
- additional_reduction = 2.5 # Further reduce overall score
45
- overall_score_index = len(normalized_scores) - 1
46
- normalized_scores[overall_score_index] = max(normalized_scores[overall_score_index] - additional_reduction, 0)
47
-
48
  # Round the scores
49
  rounded_scores = np.round(normalized_scores * 2) / 2
50
-
51
  # Display the predictions
52
  labels = ["Task Achievement", "Coherence and Cohesion", "Vocabulary", "Grammar", "Overall"]
53
  for label, score in zip(labels, rounded_scores):
54
  st.write(f"{label}: {score:.1f}")
55
  else:
56
- st.write("Please enter some text to get scores.")
 
26
 
27
  # Extract the predictions
28
  predictions = outputs.logits.squeeze()
29
+
30
  # Convert to numpy array if necessary
31
  predicted_scores = predictions.numpy()
32
+
33
+ # Apply a significant uniform reduction (e.g., reduce by 80%)
34
+ reduction_factor = 0.6 # Reduce scores by 80%
35
  adjusted_scores = predicted_scores * reduction_factor
36
+
37
  # Ensure scores do not go below zero
38
  adjusted_scores = np.maximum(adjusted_scores, 0)
39
+
40
  # Normalize the scores to ensure they fall within the 0-9 range
41
  normalized_scores = (adjusted_scores / adjusted_scores.max()) * 9 # Scale to 9
42
+
43
+ # Apply additional reductions to all scores
44
+ additional_reduction = 1.5 # Further reduce all scores
45
+ normalized_scores = np.maximum(normalized_scores - additional_reduction, 0)
46
+
 
47
  # Round the scores
48
  rounded_scores = np.round(normalized_scores * 2) / 2
49
+
50
  # Display the predictions
51
  labels = ["Task Achievement", "Coherence and Cohesion", "Vocabulary", "Grammar", "Overall"]
52
  for label, score in zip(labels, rounded_scores):
53
  st.write(f"{label}: {score:.1f}")
54
  else:
55
+ st.write("Please enter some text to get scores.")