import gradio as gr from transformers import pipeline trans = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-large-xlsr-53-spanish") clasificador = pipeline("text-classification", model="pysentimiento/robertuito-sentiment-analysis") def audio_a_text(audio): text = trans(audio)["text"] return text def texto_a_sentimiento(text): return clasificador(text)[0]["label"] demo = gr.Blocks() with demo: gr.Markdown("Este es el segundo demo con Blocks") with gr.Tabs(): with gr.TabItem("Transcribe audio en español"): with gr.Row(): audio = gr.Audio(source="microphone", type="filepath") transcripcion = gr.Textbox() b1 = gr.Button("Transcribe porfa") with gr.TabItem("Análisis de sentimiento en español"): with gr.Row(): texto = gr.Textbox() label = gr.Label() b2 = gr.Button("sentimiento porfa") b1.click(audio_a_text, inputs = audio, outputs = transcripcion) b2.click(texto_a_sentimiento, inputs = texto, outputs = label) #b3.click(clasifica_imagen, inputs = imagen, outputs=label1) demo.launch()