Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import time | |
# Obt茅n el token de manera segura desde el entorno | |
hf_token = os.getenv("HF_API_TOKEN") | |
# Clase para manejar m煤ltiples modelos | |
class ModelHandler: | |
def __init__(self, model_names, token): | |
self.clients = {model_key: InferenceClient(model_name, token=token) for model_key, model_name in model_names.items()} | |
self.current_model = list(model_names.keys())[0] | |
self.conversation_history = [] # Memoria de conversaci贸n | |
def switch_model(self, model_key): | |
if model_key in self.clients: | |
self.current_model = model_key | |
else: | |
raise ValueError(f"Modelo {model_key} no est谩 disponible.") | |
def generate_response(self, input_text): | |
# Agrega el historial de la conversaci贸n al prompt | |
self.conversation_history.append({"role": "user", "content": input_text}) | |
prompt = f"Historial de conversaci贸n: {self.conversation_history}\nPregunta: {input_text}" | |
try: | |
messages = [{"role": "user", "content": prompt}] | |
client = self.clients[self.current_model] | |
response = client.chat_completion(messages=messages, max_tokens=500) | |
if hasattr(response, 'choices') and response.choices: | |
generated_text = response.choices[0].message.content | |
self.conversation_history.append({"role": "assistant", "content": generated_text}) | |
return generated_text | |
else: | |
return str(response) | |
except Exception as e: | |
return f"Error al realizar la inferencia: {e}" | |
def analyze_emotion(self, input_text): | |
# Diccionario para traducir emociones al espa帽ol | |
emotion_translation = { | |
"joy": "Alegr铆a", | |
"anger": "Enojo", | |
"fear": "Miedo", | |
"sadness": "Tristeza", | |
"love": "Amor", | |
"surprise": "Sorpresa" | |
} | |
try: | |
client = InferenceClient("bhadresh-savani/distilbert-base-uncased-emotion", token=hf_token) | |
response = client.text_classification(input_text) | |
# Traducir las emociones y formatear la respuesta | |
emotions = [ | |
f"{emotion_translation[label['label']]}: {label['score']:.2%}" | |
for label in response | |
] | |
return "\n".join(emotions) | |
except Exception as e: | |
return f"Error al analizar la emoci贸n: {e}" | |
# Lista de modelos disponibles (con nombres amigables para la interfaz) | |
model_names = { | |
"CHATBOT": "microsoft/Phi-3-mini-4k-instruct" | |
} | |
# Inicializa el manejador de modelos | |
model_handler = ModelHandler(model_names, hf_token) | |
# Define la funci贸n para generaci贸n de im谩genes con progreso utilizando un tiempo de espera ilimitado | |
def generate_image_with_progress(prompt): | |
try: | |
client = InferenceClient("stabilityai/stable-diffusion-2-1-base", token=hf_token, timeout=None) | |
# Simular progreso | |
for progress in range(0, 101, 20): | |
time.sleep(0.5) | |
yield f"Generando imagen... {progress}% completado", None | |
image = client.text_to_image(prompt, width=512, height=512) | |
yield "Imagen generada con 茅xito", image | |
except Exception as e: | |
yield f"Error al generar la imagen: {e}", None | |
# Configura la interfaz en Gradio con selecci贸n de modelos y generaci贸n de im谩genes | |
with gr.Blocks(title="Multi-Model LLM Chatbot with Image Generation and Emotion Analysis") as demo: | |
gr.Markdown( | |
""" | |
## Chatbot Multi-Modelo LLM con Generaci贸n de Im谩genes y An谩lisis de Emociones | |
Este chatbot permite elegir entre m煤ltiples modelos de lenguaje para responder preguntas, recordar la conversaci贸n o analizar emociones en los textos. | |
""" | |
) | |
with gr.Row(): | |
model_dropdown = gr.Dropdown( | |
choices=list(model_names.keys()) + ["Generaci贸n de Im谩genes", "An谩lisis de Emociones"], | |
value="CHATBOT", | |
label="Seleccionar Acci贸n/Modelo", | |
interactive=True | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox( | |
lines=5, | |
placeholder="Escribe tu consulta o descripci贸n para la imagen...", | |
label="Entrada" | |
) | |
with gr.Column(): | |
output_display = gr.Textbox( | |
lines=5, | |
label="Estado", | |
interactive=False | |
) | |
output_image = gr.Image( | |
label="Imagen Generada", | |
interactive=False | |
) | |
submit_button = gr.Button("Enviar") | |
# Define la funci贸n de actualizaci贸n | |
def process_input(selected_action, user_input): | |
try: | |
if selected_action == "Generaci贸n de Im谩genes": | |
progress_generator = generate_image_with_progress(user_input) | |
last_status = None | |
last_image = None | |
for status, image in progress_generator: | |
last_status = status | |
last_image = image | |
return last_status, last_image | |
elif selected_action == "An谩lisis de Emociones": | |
emotion_result = model_handler.analyze_emotion(user_input) | |
return f"Emoci贸n detectada:\n{emotion_result}", None | |
else: | |
model_handler.switch_model(selected_action) | |
response = model_handler.generate_response(user_input) | |
return response, None | |
except Exception as e: | |
return f"Error: {e}", None | |
# Conecta la funci贸n a los componentes | |
submit_button.click( | |
fn=process_input, | |
inputs=[model_dropdown, input_text], | |
outputs=[output_display, output_image] | |
) | |
# Lanza la interfaz | |
demo.launch() | |