Spaces:
Sleeping
Sleeping
KasKniesmeijer
commited on
Commit
·
ff6b5fc
1
Parent(s):
cab1df1
improved code
Browse files
app.py
CHANGED
@@ -1,31 +1,71 @@
|
|
1 |
-
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
|
|
|
|
|
|
4 |
|
5 |
-
# Set the device (
|
6 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
# Initialize processor and model
|
9 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
10 |
model = AutoModelForVision2Seq.from_pretrained(
|
11 |
"HuggingFaceTB/SmolVLM-Instruct",
|
12 |
-
torch_dtype=torch.bfloat16,
|
13 |
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
|
14 |
).to(DEVICE)
|
15 |
|
16 |
|
17 |
# Define the function to answer questions
|
18 |
def answer_question(image, question):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
-
# Gradio interface
|
26 |
interface = gr.Interface(
|
27 |
fn=answer_question,
|
28 |
-
inputs=["image", "text"],
|
29 |
outputs="text",
|
30 |
title="SmolVLM - Vision-Language Question Answering",
|
31 |
description="Upload an image and ask a question to get an answer powered by SmolVLM.",
|
|
|
|
|
1 |
import torch
|
2 |
+
from PIL import Image
|
3 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
4 |
+
from transformers.image_utils import load_image
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
|
8 |
+
# Set the device (GPU or CPU)
|
9 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# Initialize processor and model
|
12 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
13 |
model = AutoModelForVision2Seq.from_pretrained(
|
14 |
"HuggingFaceTB/SmolVLM-Instruct",
|
15 |
+
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
|
16 |
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
|
17 |
).to(DEVICE)
|
18 |
|
19 |
|
20 |
# Define the function to answer questions
|
21 |
def answer_question(image, question):
|
22 |
+
# Check if the image is provided
|
23 |
+
if image is None:
|
24 |
+
return "Error: Please upload an image."
|
25 |
+
|
26 |
+
# Convert NumPy array to PIL Image if necessary
|
27 |
+
try:
|
28 |
+
if isinstance(image, np.ndarray):
|
29 |
+
image = Image.fromarray(image)
|
30 |
+
except Exception as e:
|
31 |
+
return f"Error: Unable to process the image. {str(e)}"
|
32 |
+
|
33 |
+
# Ensure question is provided
|
34 |
+
if not question.strip():
|
35 |
+
return "Error: Please provide a question."
|
36 |
+
|
37 |
+
# Create input message for the model
|
38 |
+
messages = [
|
39 |
+
{
|
40 |
+
"role": "user",
|
41 |
+
"content": [
|
42 |
+
{"type": "image", "image": image},
|
43 |
+
{"type": "text", "text": question},
|
44 |
+
],
|
45 |
+
},
|
46 |
+
]
|
47 |
+
|
48 |
+
# Apply chat template (this assumes the processor has a chat-based input format)
|
49 |
+
try:
|
50 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
51 |
+
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(DEVICE)
|
52 |
+
except Exception as e:
|
53 |
+
return f"Error: Failed to prepare inputs. {str(e)}"
|
54 |
+
|
55 |
+
# Generate the output
|
56 |
+
try:
|
57 |
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
58 |
+
generated_texts = processor.batch_decode(
|
59 |
+
generated_ids, skip_special_tokens=True
|
60 |
+
)
|
61 |
+
return generated_texts[0]
|
62 |
+
except Exception as e:
|
63 |
+
return f"Error: Failed to generate output. {str(e)}"
|
64 |
|
65 |
|
|
|
66 |
interface = gr.Interface(
|
67 |
fn=answer_question,
|
68 |
+
inputs=["image", "text"], # Image and text inputs
|
69 |
outputs="text",
|
70 |
title="SmolVLM - Vision-Language Question Answering",
|
71 |
description="Upload an image and ask a question to get an answer powered by SmolVLM.",
|