FAAM-demo / app.py
KasKniesmeijer's picture
added js
12f098c
raw
history blame
3.8 kB
import torch
from PIL import Image
from transformers import (
AutoProcessor,
AutoModelForVision2Seq,
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import numpy as np
import gradio as gr
import librosa
from gradio.themes import Citrus
# Set the device (GPU or CPU)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
# Initialize processor and model
try:
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-Instruct",
torch_dtype=torch.bfloat16,
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
).to(DEVICE)
stt_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
stt_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(DEVICE)
except Exception as e:
print(f"Error loading model or processor: {str(e)}")
exit(1)
# Define the function to convert speech to text
def speech_to_text(audio):
try:
# Load audio
audio, rate = librosa.load(audio, sr=16000)
input_values = stt_processor(
audio, return_tensors="pt", sampling_rate=16000
).input_values.to(DEVICE)
logits = stt_model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = stt_processor.decode(predicted_ids[0])
print(f"Detected text: {transcription}")
return transcription
except Exception as e:
return f"Error: Unable to process the audio. {str(e)}"
# Define the function to answer questions
def answer_question(image, question, audio):
# Convert speech to text if audio is provided
if audio is not None:
question = speech_to_text(audio)
# Check if the image is provided
if image is None:
return "Error: Please upload an image."
# Convert NumPy array to PIL Image
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
except Exception as e:
return f"Error: Unable to process the image. {str(e)}"
# Ensure question is provided
if not question.strip():
return "Error: Please provide a question."
# Create input message for the model
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": question},
],
},
]
# Apply chat template and prepare inputs
try:
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(DEVICE)
except Exception as e:
return f"Error: Failed to prepare inputs. {str(e)}"
# Generate answer
try:
outputs = model.generate(**inputs, max_new_tokens=400)
answer = processor.decode(outputs[0], skip_special_tokens=True)
return answer
except Exception as e:
return f"Error: Failed to generate answer. {str(e)}"
# Customize the Citrus theme with a specific neutral_hue
custom_citrus = Citrus(neutral_hue="slate")
# Define your Gradio interface
iface = gr.Interface(
fn=answer_question,
inputs=[
gr.Image(type="numpy", value="faam_to_the_future.jpg"),
gr.Textbox(lines=2, placeholder="Enter your question here..."),
gr.Audio(
type="filepath",
sources="microphone",
label="Upload a recording or record a question",
),
],
outputs="text",
title="FAAM-demo | Vision Language Model | SmolVLM",
description="Upload an image and ask questions about it",
theme=custom_citrus,
)
# Launch the interface
iface.launch()