import gradio as gr from transformers import pipeline # Load the classification pipeline classifier = pipeline( "sentiment-analysis", model="Karzan/user_profile_skills_model", return_all_scores=True, top_k=10 ) # Define the prediction function def classify_text(text): # Perform classification results = classifier(text) # Format the output formatted_results = [ {"label": item["label"], "score": round(item["score"], 4)} for result in results for item in result ] return formatted_results # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Text Classification with Hugging Face Transformers") gr.Markdown("Enter text to classify using the model: **Karzan/user_profile_skills_model**.") with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text", lines=3, placeholder="Type something...") classify_button = gr.Button("Classify") with gr.Column(): output_text = gr.JSON(label="Classification Results") classify_button.click(classify_text, inputs=input_text, outputs=output_text) # Launch the app demo.launch()