Karzan's picture
Update app.py
c52ae65 verified
raw
history blame
1.18 kB
import gradio as gr
from transformers import pipeline
# Load the classification pipeline
classifier = pipeline(
"sentiment-analysis",
model="Karzan/user_profile_skills_model",
return_all_scores=True,
top_k=10
)
# Define the prediction function
def classify_text(text):
# Perform classification
results = classifier(text)
# Format the output
formatted_results = [
{"label": item["label"], "score": round(item["score"], 4)}
for result in results for item in result
]
return formatted_results
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text Classification with Hugging Face Transformers")
gr.Markdown("Enter text to classify using the model: **Karzan/user_profile_skills_model**.")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=3, placeholder="Type something...")
classify_button = gr.Button("Classify")
with gr.Column():
output_text = gr.JSON(label="Classification Results")
classify_button.click(classify_text, inputs=input_text, outputs=output_text)
# Launch the app
demo.launch()