File size: 4,881 Bytes
b4b95a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e03ca4d
b4b95a6
e03ca4d
b4b95a6
e03ca4d
b4b95a6
e03ca4d
 
b4b95a6
 
 
 
e03ca4d
b4b95a6
f312fcb
 
b4b95a6
 
 
e6303fa
b4b95a6
e6303fa
b4b95a6
 
e6303fa
 
 
 
 
 
 
 
 
b4b95a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6303fa
b4b95a6
e6303fa
b4b95a6
e6303fa
 
 
 
 
beccaa7
 
 
 
e6303fa
 
 
 
 
 
 
 
 
 
 
 
 
beccaa7
e6303fa
b4b95a6
e03ca4d
b4b95a6
 
 
fad121c
e03ca4d
b4b95a6
 
 
 
 
e03ca4d
b4b95a6
 
 
 
e6303fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#####################################################
# Utils
#####################################################
# 本文件包含了一些用于数据处理和绘图的实用函数。

import base64
from io import BytesIO
from matplotlib import pyplot as plt
import pandas as pd
import plotly.graph_objects as go
import numpy as np


def ndarray_to_base64(ndarray):
    """
    将一维np.ndarray绘图并转换为Base64编码。
    """
    # 创建绘图
    plt.figure(figsize=(8, 4))
    plt.plot(ndarray)
    plt.title("Vector Plot")
    plt.xlabel("Index")
    plt.ylabel("Value")
    plt.tight_layout()
    
    # 保存图像到内存字节流
    buffer = BytesIO()
    plt.savefig(buffer, format="png")
    plt.close()
    buffer.seek(0)
    
    # 转换为Base64字符串
    base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
    return f"data:image/png;base64,{base64_str}"

def flatten_ndarray_column(df, column_name, rows_to_include):
    """
    将嵌套的np.ndarray列展平为多列,并只保留指定的行。
    """
    def select_and_flatten(ndarray):
        if isinstance(ndarray, np.ndarray) and ndarray.dtype == 'O':
            selected = [ndarray[i] for i in rows_to_include if i < len(ndarray)]
            return np.concatenate([select_and_flatten(subarray) for subarray in selected])
        elif isinstance(ndarray, np.ndarray) and ndarray.ndim == 1:
            return np.expand_dims(ndarray, axis=0)
        return ndarray

    selected_data = df[column_name].apply(select_and_flatten)

    for i, index in enumerate(rows_to_include):
        df[f'{column_name}_{index}'] = selected_data.apply(lambda x: x[i])

    return df

def create_plot(dfs:list[pd.DataFrame], ids:list[str]):
    """
    创建一个包含所有传入 DataFrame 的线图。
    """
    fig = go.Figure()
    for df, df_id in zip(dfs, ids):
        for i, column in enumerate(df.columns[1:]):
            fig.add_trace(go.Scatter(
                x=df[df.columns[0]], 
                y=df[column], 
                mode='lines', 
                name=f"item_{df_id} - {column}",
                visible=True if i == 0 else 'legendonly'
            ))
    
    # 配置图例
    fig.update_layout(
        legend=dict(
            title="Variables",
            orientation="h",
            yanchor="top",
            y=-0.2,
            xanchor="center",
            x=0.5
        ),
        xaxis_title='Time',
        yaxis_title='Values'
    )
    return fig

def create_statistic(dfs: list[pd.DataFrame], ids: list[str]):
    """
    计算数据集列表的统计信息。
    """
    stats_list = []

    for df, id in zip(dfs, ids):
        df_values = df.iloc[:, 1:]
        # 计算统计值
        mean_values = df_values.mean()
        std_values = df_values.std()
        max_values = df_values.max()
        min_values = df_values.min()

        # 将这些统计信息合并成一个新的DataFrame
        stats_df = pd.DataFrame({
            'Variables': [f"{id}_{col}" for col in df_values.columns],
            'mean': mean_values.values,
            'std': std_values.values,
            'max': max_values.values,
            'min': min_values.values
        })
        stats_list.append(stats_df)

    # 合并所有统计信息DataFrame
    combined_stats_df = pd.concat(stats_list, ignore_index=True)
    combined_stats_df = combined_stats_df.applymap(lambda x: round(x, 2) if isinstance(x, (int, float)) else x)
    return combined_stats_df

def clean_up_df(df: pd.DataFrame, rows_to_include: list[int]) -> pd.DataFrame:
    """
    清理数据集,将嵌套的np.ndarray列展平为多列。
    """
    rows_to_include = sorted(rows_to_include)

    df['timestamp'] = df.apply(lambda row: pd.date_range(
        start=row['start'], 
        periods=len(row['target'][0]) if isinstance(row['target'][0], np.ndarray) else len(row['target']), 
        freq=row['freq']
    ).to_pydatetime().tolist(), axis=1)
    df = flatten_ndarray_column(df, 'target', rows_to_include)
    # 删除原始的start和freq列
    df.drop(columns=['start', 'freq', 'target'], inplace=True)
    if 'past_feat_dynamic_real' in df.columns:
        df.drop(columns=['past_feat_dynamic_real'], inplace=True)
    return df

if __name__ == '__main__':

    # 创建测试数据
    data1 = {
        'Time': ['2023-01-01', '2023-01-02', '2023-01-03'],
        'Value1': [10, 15, 20],
        'Value2': [20, 25, 30]
    }

    data2 = {
        'Time': ['2023-01-01', '2023-01-02', '2023-01-03'],
        'Value3': [5, 10, 15],
        'Value4': [15, 20, 25]
    }

    df1 = pd.DataFrame(data1)
    df2 = pd.DataFrame(data2)

    # 转换时间列为日期时间格式
    df1['Time'] = pd.to_datetime(df1['Time'])
    df2['Time'] = pd.to_datetime(df2['Time'])

    # 创建图表
    fig = create_plot(df1, df2)

    # 显示图表
    fig.show()